Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Light-dressed potential energy surface

Fig. 1.1. Schematic view of the Coulomb explosion imaging of nuclear dynamics. Molecules exposed to an intense laser field undergo structural deformation in response to the formation of light-dressed potential energy surfaces, and decompose into fragment ions after multiple ionization. Since the momentum vectors of fragment ions sensitively reflect the geometrical structure just before the Coulomb explosion, the ultrafast nuclear dynamics of a molecule in an intense laser field can be elucidated through measurements of the momenta of fragment ions... Fig. 1.1. Schematic view of the Coulomb explosion imaging of nuclear dynamics. Molecules exposed to an intense laser field undergo structural deformation in response to the formation of light-dressed potential energy surfaces, and decompose into fragment ions after multiple ionization. Since the momentum vectors of fragment ions sensitively reflect the geometrical structure just before the Coulomb explosion, the ultrafast nuclear dynamics of a molecule in an intense laser field can be elucidated through measurements of the momenta of fragment ions...
Fig. 18.1 A dressed-state model that is used in the text to describe absorption, emission, and elastic (Rayleigh) and inelastic (Raman) light scattering. g) and. v> represent particular vibronic levels associated with the lower (1) and upper (2) electronic states, respectively. These are levels associated with the nuclear potential surfaces of electronic states 1 and 2 (schematically represented hy the parabolas). Rj are radiative continua— 1 -photon-dressed vibronic levels of the lower electronic states. The quasi-continuum L represents a nonradiative channel—the high-energy regime of the vibronic manifold of electronic state 1. Note that the molecular dipole operator /t couples ground (g) and excited (s) molecular states, but the ensuing process occurs between quasi-degenerate dressed states g,k and 5,0). Fig. 18.1 A dressed-state model that is used in the text to describe absorption, emission, and elastic (Rayleigh) and inelastic (Raman) light scattering. g) and. v> represent particular vibronic levels associated with the lower (1) and upper (2) electronic states, respectively. These are levels associated with the nuclear potential surfaces of electronic states 1 and 2 (schematically represented hy the parabolas). Rj are radiative continua— 1 -photon-dressed vibronic levels of the lower electronic states. The quasi-continuum L represents a nonradiative channel—the high-energy regime of the vibronic manifold of electronic state 1. Note that the molecular dipole operator /t couples ground (g) and excited (s) molecular states, but the ensuing process occurs between quasi-degenerate dressed states g,k and 5,0).

See other pages where Light-dressed potential energy surface is mentioned: [Pg.150]    [Pg.151]    [Pg.150]    [Pg.151]    [Pg.3]    [Pg.17]    [Pg.164]    [Pg.165]    [Pg.319]   


SEARCH



Surface dressing

© 2024 chempedia.info