Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lattice vibrations surface dynamics

At the same time, many lattice dynamics models have been constructed from force-constant models or ab-initio methods. Recently, the technique of molecular dynamics (MD) simulation has been widely used" " to study vibrations, surface melting, roughening and disordering. In particular, it has been demonstrated " " " that the presence of adatoms modifies drastically the vibrational properties of surfaces. Lately, the dynamical properties of Cu adatoms on Cu(lOO) " and Cu(lll) faces have been calculated using MD simulations and a many-body potential based on the tight-binding (TB) second-moment aproximation (SMA). " ... [Pg.151]

Dynamic smdies of the alloy system in CO and H2 demonstrate that the morphology and chemical surfaces differ in the different gases and they influence chemisorption properties. Subnanometre layers of Pd observed in CO and in the synthesis gas have been confirmed by EDX analyses. The surfaces are primarily Pd-rich (100) surfaces generated during the syngas reaction and may be active structures in the methanol synthesis. Diffuse scattering is observed in perfect B2 catalyst particles. This is attributed to directional lattice vibrations, with the diffuse streaks resulting primarily from the intersections of 111 reciprocal lattice (rel) walls and (110) rel rods with the Ewald sphere. [Pg.197]

The problem of lattice vibrations, which is one of the major task of solid state physics, has recently become of interest in order to obtain information on the dynamics and the electronic properties of solid surfaces. The rapid development of experimental techniques makes it possible to obtain information on surface phonons, surface structure and atom-surface interaction potentials. [Pg.402]

Dynamic models for ionic lattices recognize explicitly the force constants between ions and their polarization. In shell models, the ions are represented as a shell and a core, coupled by a spring (see Refs. 57-59), and parameters are evaluated by matching bulk elastic and dielectric properties. Application of these models to the surface region has allowed calculation of surface vibrational modes [60] and LEED patterns [61-63] (see Section VIII-2). [Pg.268]

In an effort to understand the mechanisms involved in formation of complex orientational structures of adsorbed molecules and to describe orientational, vibrational, and electronic excitations in systems of this kind, a new approach to solid surface theory has been developed which treats the properties of two-dimensional dipole systems.61,109,121 In adsorbed layers, dipole forces are the main contributors to lateral interactions both of dynamic dipole moments of vibrational or electronic molecular excitations and of static dipole moments (for polar molecules). In the previous chapter, we demonstrated that all the information on lateral interactions within a system is carried by the Fourier components of the dipole-dipole interaction tensors. In this chapter, we consider basic spectral parameters for two-dimensional lattice systems in which the unit cells contain several inequivalent molecules. As seen from Sec. 2.1, such structures are intrinsic in many systems of adsorbed molecules. For the Fourier components in question, the lattice-sublattice relations will be derived which enable, in particular, various parameters of orientational structures on a complex lattice to be expressed in terms of known characteristics of its Bravais sublattices. In the framework of such a treatment, the ground state of the system concerned as well as the infrared-active spectral frequencies of valence dipole vibrations will be elucidated. [Pg.52]

Here we focus on the effect of dipolar dispersion laws for high-frequency collective vibrations on the shift and width of their spectral line, with surface molecules inclined at an arbitrary angle 6 to the surface-normal direction. For definiteness, we consider the case of a triangular lattice and the ferroelectric ordering of dipole moments inherent in this lattice type.56,109 Lateral interactions of dynamic dipole moments p = pe (e = (sin os, sin6fcin , cos )) corresponding to collective vibrations on a simple two-dimensional lattice of adsorbed molecules cause these vibrations to collectivize in accordance with the dispersion law 121... [Pg.114]

The obtained Ao gi = 5.7 x 10 is even larger than the value of Acr (Cu) X (= 4.7 X 10 A ), and of the hypothetical Co—Cu crystal with intermediate elastic properties than bulk cobalt and copper (4.1 x lO" A ). The derived effect of the effect of the lower coordination of the surface atoms on the mean-square relative displacement (perpendicular vs. parallel motions) is 1.4 times larger amplitude of the perpendicular vs. parallel motions, in agreement with lattice dynamics calculations. This SEXAFS study has produced a measure of the surface effect on the atomic vibrations. This has been possible due to the absence of surface or adsorbate reconstruction (i.e. no changes in bond orientations with respect to the bulk) and of intermixing. [Pg.113]

The surface Fuchs-Kliewer modes, like the Rayleigh modes, should be regarded as macroscopic vibrations, and may be predicted from the bulk elastic or dielectric properties of the solid with the imposition of a surface boundary condition. Their projection deep into the bulk makes them insensitive to changes in local surface structure, or the adsorption of molecules at the surface. True localised surface modes are those which depend on details of the lattice dynamics of near surface ions which may be modified by surface reconstruction, relaxation or adsorbate bonding at the surface. Relatively little has been reported on the measurement of such phonon modes, although they have been the subject of lattice dynamical calculations [61-67],... [Pg.530]

D. D. Koleske, Studies of surface vibrations and structure using molecular dynamics simulations, lattice dynamics calculations, and helium atom scattering, 1992)... [Pg.220]

Conventional infrared spectra of powdery materials are very often used for studying solid hydrates in terms of sample characterization (fingerprints), phase transitions, and both structural and bonding features. For the latter objects mostly deuteration experiments are included. However, it must be born in mind that the band frequencies observed (except those of isotopically dilute samples (see Sect. 2.6)) are those of surface modes rather than due to bulk vibrations, i.e., the transverse optical phonon modes, and, hence, not favorably appropriate for molecular and lattice dynamic calculations. [Pg.100]

The dynamics of adsorbed species over MgO(OOl) surface was studied by MD method. The migration of the adsorbed species was found to depend on the morphology of MgO and the thermal vibration of surface atoms in MgO lattice. Further, the situation where the supercritical fluid and adsorbed species exist together was simulated. The collision of supercritical fluid with the adsorbed species was identified as the primary cause of extraction. Additionally, the supercritical fluid form clusters around the desorbed species avoiding the readsorption. Thus, clustering is the secondary cause for the increased efficiency of supercritical extraction even above the critical conditions. The details of these simulation studies are given in the following section. [Pg.23]

It is intended for this chapter to be a brief introduction to surface lattice dynamics and to some of the kinds of information that one is able to obtain about the electronic and vibrational properties of surfaces through high-resolution helium atom scattering. Such information is critical to the understanding of many aspects of surface chemistry and to the design of novel materials with specifically desired properties. [Pg.132]


See other pages where Lattice vibrations surface dynamics is mentioned: [Pg.298]    [Pg.116]    [Pg.365]    [Pg.136]    [Pg.267]    [Pg.26]    [Pg.816]    [Pg.174]    [Pg.133]    [Pg.195]    [Pg.207]    [Pg.208]    [Pg.213]    [Pg.696]    [Pg.692]    [Pg.12]    [Pg.55]    [Pg.6143]    [Pg.149]    [Pg.583]    [Pg.80]    [Pg.14]    [Pg.294]    [Pg.158]    [Pg.55]    [Pg.75]    [Pg.6142]    [Pg.151]    [Pg.178]    [Pg.5569]    [Pg.21]   
See also in sourсe #XX -- [ Pg.139 , Pg.140 , Pg.141 , Pg.142 , Pg.143 , Pg.144 ]




SEARCH



Surface lattice

Surface vibration lattice vibrations

Surface vibrations

Vibrational dynamics

© 2024 chempedia.info