Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser flash photolysis 2 + 3 -cycloaddition reactions

Confirmation was provided by the observation that the species produced by the photolysis of two different carbene sources (88 and 89) in acetonitrile and by photolysis of the azirine 92 all had the same strong absorption band at 390 nm and all reacted with acrylonitrile at the same rate (fc=4.6 x 10 Af s" ). Rate constants were also measured for its reaction with a range of substituted alkenes, methanol and ferf-butanol. Laser flash photolysis work on the photolysis of 9-diazothioxan-threne in acetonitrile also produced a new band attributed the nitrile ylide 87 (47). The first alkyl-substituted example, acetonitrilio methylide (95), was produced in a similar way by the photolysis of diazomethane or diazirine in acetonitrile (20,21). This species showed a strong absorption at 280 nm and was trapped with a variety of electron-deficient olefinic and acetylenic dipolarophiles to give the expected cycloadducts (e.g., 96 and 97) in high yields. When diazomethane was used as the precursor, the reaction was carried out at —40 °C to minimize the rate of its cycloaddition to the dipolarophile. In the reactions with unsymmetrical dipolarophiles such as acrylonitrile, methyl acrylate, or methyl propiolate, the ratio of regioisomers was found to be 1 1. [Pg.487]

A number of alkene radical cations have been generated in matrices at low temperature and have also been studied by ESR, CIDNP, and electrochemical methods. However, until recently very little absolute kinetic data have been available for the reactions of these important reactive intermediates in solution under conditions comparable to those used in mechanistic or synthetic studies. In a few cases, competitive kinetic techniques have been used to estimate rates for nucleophilic additions or radical cation/alkene cycloaddition reactions. In addition, pulse radiolysis has been used to provide rate constants for some of the radical cation chemistry relevant to the pho-topolymerization of styrenes. More recently, wc and others have used laser flash photolysis to generate and characterize a variety of alkene radical cations. This method has been extensively applied to the study of other reactive intermediates such as radicals, carbenes, and carbenium ions and is particularly well-suited for kinetic measurements of species that have lifetimes in the tens of nanoseconds range and up and that have at least moderate extinction coeffleients in the UV-visible region. [Pg.42]

This review summarizes the generation and spectroscopic characterization of alkene radical cations and kinetic and mechanistic studies of their reactions with nucleophiles and cycloaddition chemistry. Most of the data have been obtained using laser flash photolysis techniques, but comparisons with kinetic data obtained using other methods and with steady-state experiments are presented where appropriate. To date most kinetic measurements using laser Hash photolysis techniques have focused on arylalkene radical cations since these are relatively easy to generate and have spectroscopic and kinetic behavior that is commensurate with nanosecond laser flash photolysis techniques. [Pg.43]


See other pages where Laser flash photolysis 2 + 3 -cycloaddition reactions is mentioned: [Pg.418]    [Pg.438]    [Pg.963]    [Pg.76]    [Pg.164]    [Pg.893]    [Pg.254]    [Pg.164]    [Pg.267]    [Pg.212]    [Pg.399]    [Pg.92]    [Pg.227]    [Pg.160]    [Pg.250]    [Pg.94]   
See also in sourсe #XX -- [ Pg.497 , Pg.498 , Pg.499 , Pg.500 , Pg.501 ]

See also in sourсe #XX -- [ Pg.497 , Pg.498 , Pg.499 , Pg.500 , Pg.501 ]




SEARCH



Flash photolysis

Laser flash photolysis

Laser reactions

© 2024 chempedia.info