Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laminated plates governing equations

The solution to the governing differential equation, Equation (5.32), is not as simple as for specially orthotropic laminated plates because of the presence of D. g and D2g. The Fourier expansion of the deflection w. Equation (5.29), is an example of separation of variables. However, because of the terms involving D.,g and D2g, the expansion does not satisfy the governing differential equation because the variables are not separable. Moreover, the deflection expansion also does not satisfy the boundary conditions. Equation (5.33), again because of the terms involving D. g and D2g. [Pg.291]

Transient Heat Conduction. Our next simulation might be used to model the transient temperature history in a slab of material placed suddenly in a heated press, as is frequently done in lamination processing. This is a classical problem with a well known closed solution it is governed by the much-studied differential equation (3T/3x) - q(3 T/3x ), where here a - (k/pc) is the thermal diffuslvity. This analysis is also identical to transient species diffusion or flow near a suddenly accelerated flat plate, if q is suitably interpreted (6). [Pg.274]


See other pages where Laminated plates governing equations is mentioned: [Pg.278]    [Pg.288]    [Pg.306]    [Pg.306]    [Pg.315]    [Pg.317]    [Pg.332]   
See also in sourсe #XX -- [ Pg.279 , Pg.280 , Pg.281 , Pg.282 , Pg.283 , Pg.284 , Pg.285 , Pg.286 , Pg.287 , Pg.288 ]




SEARCH



Equations plates

Governing equations

Laminated plates

© 2024 chempedia.info