Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lactones coupling

Allenic alcohols couple with allyl indium reagents at 140°C to give allylic alcohol products. Similarly, (o-hydroxy lactones couple with organoindium reagents. [Pg.545]

Figure 7. Lactone coupling of peptides after cleavage at tyrosine, tryptophan, or histidine. Figure 7. Lactone coupling of peptides after cleavage at tyrosine, tryptophan, or histidine.
Palladium(II)-catalysed cross-coupling reactions involving stan-nanes have continued to be developed, a-Halogeno-esters and -lactones couple with allylstannanes and a-stannyl-ketones in good... [Pg.395]

The reductive coupling of aldehydes or ketones with 01, -unsaturated carboxylic esters by > 2 mol samarium(II) iodide (J.A. Soderquist, 1991) provides a convenient route to y-lactones (K. Otsubo, 1986). Intramolecular coupling of this type may produce trans-2-hy-droxycycloalkaneacetic esters with high stereoselectivity, if the educt is an ( )-isomer (E.J. Enholm, 1989 A, B). [Pg.69]

The (partial) description of the synthesis and coupling of the five fragments starts with the cyclohexyl moiety C —C. The first step involved the enantio- and diastereoselective harpless epoxidation of l,4-pentadien-3-ol described on p. 126f. The epoxide was converted in four steps to a d-vinyl d-lactone which gave a 3-cyclohexenecarboxylate via Ireland-CIaisen rearrangement (cf. p. 87). Uncatalysed hydroboration and oxidation (cf. p. 131) yielded the desired trans-2-methoxycyclohexanol which was protected as a silyl ether. The methyl car-... [Pg.324]

The a-bromo-7-lactone 901 undergoes smooth coupling with the acetonyltin reagent 902 to afford the o-acetonyl-7-butyrolactone 903[763j. The o-chloro ether 904, which has no possibility of //-elimination after oxidative addition, reacts with vinylstannane to give the allyl ether 905, The o -bromo ether 906 is also used for the intramolecular alkyne insertion and transmetallation with allylstannane to give 907[764],... [Pg.261]

The unsaturated c.vo-enol lactone 17 is obtained by the coupling of propargylic acetate with 4-pentynoic acid in the presence of KBr using tri(2-furyl)-phosphine (TFP) as a ligand. The reaction is explained by the oxypalladation of the triple bond of 4-pentynoic acid with the ailenyipailadium and the carbox-ylate as shown by 16, followed by reductive elimination to afford the lactone 17. The ( -alkene bond is formed because the oxypalladation is tnins addition[8]. [Pg.455]

Pd-catalyzed intermolecular coupling reactions of allyl alkynoates with formation of bioactive y-lactones 98SL115. [Pg.251]

An intramolecular variant of the Stille coupling is suitable for the construction of macrocycles. An example is the ring-closing step to form a 14-membered lactone ring 8 in a synthesis of zearalenone as reported by Stille et al. ... [Pg.266]

Figure 3.7 shows some early examples of this type of analysis (39), illustrating the GC determination of the stereoisomeric composition of lactones in (a) a fruit drink (where the ratio is racemic, and the lactone is added artificially) and (b) a yoghurt, where the non-racemic ratio indicates no adulteration. Technically, this separation was enabled on a short 10 m slightly polar primary column coupled to a chiral selective cyclodextrin secondary column. Both columns were independently temperature controlled and the transfer cut performed by using a Deans switch, with a backflush of the primary column following the heart-cut. [Pg.65]

H.-G. Schmarx, A. Mosandl and K. Grob, Stereoisomeric flavour compounds. XXXVIII dkect chir ospecific analysis of y-lactones using on-line coupled EC-GC with a chkal separation column , Chromatographia 29 125-130 (1990). [Pg.247]

With the co side chain at C-12 in place, we are now in a position to address the elaboration of the side chain appended to C-8 and the completion of the syntheses. Treatment of lactone 19 with di-isobutylaluminum hydride (Dibal-H) accomplishes partial reduction of the C-6 lactone carbonyl and provides lactol 4. Wittig condensation8 of 4 with nonstabilized phosphorous ylide 5 proceeds smoothly and stereoselectively to give intermediate 20, the bistetra-hydropyranyl ether of ( )-1, in a yield of -80% from 18. The convergent coupling of compounds 4 and 5 is attended by the completely selective formation of the desired cis C5-C6 olefin. [Pg.73]

As inert as the C-25 lactone carbonyl has been during the course of this synthesis, it can serve the role of electrophile in a reaction with a nucleophile. For example, addition of benzyloxymethyl-lithium29 to a cold (-78 °C) solution of 41 in THF, followed by treatment of the intermediate hemiketal with methyl orthoformate under acidic conditions, provides intermediate 42 in 80% overall yield. Reduction of the carbon-bromine bond in 42 with concomitant -elimination of the C-9 ether oxygen is achieved with Zn-Cu couple and sodium iodide at 60 °C in DMF. Under these reaction conditions, it is conceivable that the bromine substituent in 42 is replaced by iodine, after which event reductive elimination occurs. Silylation of the newly formed tertiary hydroxyl group at C-12 with triethylsilyl perchlorate, followed by oxidative cleavage of the olefin with ozone, results in the formation of key intermediate 3 in 85 % yield from 42. [Pg.245]

Vinyl triflates derived from lactone enolates are also viable coupling partners In Ni(ll)/Cr(ll)-mediated carbon-carbon bond forming reactions... [Pg.714]

An allylsilane-generating CM using catalyst C between the sensitive /J-lactone 319 and allyltrimethylsilane served to introduce the allylsilane moiety in intermediate 320 as an inconsequential mixture (ca. 3 1) of (EIZ)-isomers in 80% yield. Cyclization of /J-lactone 320 with TiCl4 smoothly delivered cyclopentane 321 with inversion at the /J-carbon. Acid 321 was converted to key aldehyde 322 in three steps. The convergent fragment coupling was performed by a uniquely... [Pg.333]

Polylactides, 18 Poly lactones, 18, 43 Poly(L-lactic acid) (PLLA), 22, 41, 42 preparation of, 99-100 Polymer age, 1 Polymer architecture, 6-9 Polymer chains, nonmesogenic units in, 52 Polymer Chemistry (Stevens), 5 Polymeric chiral catalysts, 473-474 Polymeric materials, history of, 1-2 Polymeric MDI (PMDI), 201, 210, 238 Polymerizations. See also Copolymerization Depolymerization Polyesterification Polymers Prepolymerization Repolymerization Ring-opening polymerization Solid-state polymerization Solution polymerization Solvent-free polymerization Step-grown polymerization processes Vapor-phase deposition polymerization acid chloride, 155-157 ADMET, 4, 10, 431-461 anionic, 149, 174, 177-178 batch, 167 bulk, 166, 331 chain-growth, 4 continuous, 167, 548 coupling, 467 Friedel-Crafts, 332-334 Hoechst, 548 hydrolytic, 150-153 influence of water content on, 151-152, 154... [Pg.597]


See other pages where Lactones coupling is mentioned: [Pg.267]    [Pg.273]    [Pg.442]    [Pg.267]    [Pg.273]    [Pg.442]    [Pg.320]    [Pg.321]    [Pg.322]    [Pg.256]    [Pg.346]    [Pg.476]    [Pg.499]    [Pg.244]    [Pg.247]    [Pg.247]    [Pg.137]    [Pg.296]    [Pg.238]    [Pg.17]    [Pg.171]    [Pg.180]    [Pg.243]    [Pg.245]    [Pg.442]    [Pg.503]    [Pg.534]    [Pg.737]    [Pg.760]    [Pg.771]    [Pg.776]    [Pg.273]   
See also in sourсe #XX -- [ Pg.1191 ]




SEARCH



Coupling constants lactones

Lactones, vinyl ring-opening and coupling reactions

© 2024 chempedia.info