Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics metallacyclobutane complexes

The expected intermediate for the metathesis reaction of a metal alkylidene complex and an alkene is a metallacyclobutane complex. Grubbs studied titanium complexes and he found that biscyclopentadienyl-titanium complexes are active as metathesis catalysts, the stable resting state of the catalyst is a titanacyclobutane, rather than a titanium alkylidene complex [15], A variety of metathesis reactions are catalysed by the complex shown in Figure 16.8, although the activity is moderate. Kinetic and labelling studies were used to demonstrate that this reaction proceeds through the carbene intermediate. [Pg.342]

The rearrangement of platinacyclobutanes to alkene complexes or ylide complexes is shown to involve an initial 1,3-hydride shift (a-elimina-tion), which may be preceded by skeletal isomerization. This isomerization can be used as a model for the bond shift mechanism of isomerization of alkanes by platinum metal, while the a-elimination also suggests a possible new mechanism for alkene polymerisation. New platinacyclobutanes with -CH2 0SC>2Me substituents undergo solvolysis with ring expansion to platinacyclopentane derivatives, the first examples of metallacyclobutane to metallacyclopentane ring expansion. The mechanism, which may also involve preliminary skeletal isomerization, has been elucidated by use of isotopic labelling and kinetic studies. [Pg.339]

Although the molybdenum and ruthenium complexes 1-3 have gained widespread popularity as initiators of RCM, the cydopentadienyl titanium derivative 93 (Tebbe reagent) [28,29] can also be used to promote olefin metathesis processes (Scheme 13) [28]. In a stoichiometric sense, 93 can be also used to promote the conversion of carbonyls into olefins [28b, 29]. Both transformations are thought to proceed via the reactive titanocene methylidene 94, which is released from the Tebbe reagent 93 on treatment with base. Subsequent reaction of 94 with olefins produces metallacyclobutanes 95 and 97. Isolation of these adducts, and extensive kinetic and labeling studies, have aided in the eluddation of the mechanism of metathesis processes [28]. [Pg.102]

The preferences of the various pathways are dependent on the catalyst used, specifically the electronic and steric factors involved. The electronic contribution is based on the preference of the metallacycle to have the electron-donating alkyl groups at either the a or the carbon of ftie metallacycle [23]. The steric factors involved in the approach of the olefin to the metal carbene also determine the re-giochemistry of the metallacyclobutane formed. These factors include both steric repulsion of the olefin and carbene substituents from each other and from the ancillary ligands of the metal complex. Paths (b), (c), and (e) in Scheme 6.10 are important to productive ADMET. The relative rates of pathways (c) and (e) will determine the kinetic amount of cis and trans double bonds in the polymer chain. Flowever, in some cases a more thermodynamic ratio of cis to trans olefin isomers is attained after long reaction times, presumably by a trans-metathesis olefin equilibration mechanism [31] (Scheme 6.11). [Pg.201]

Detection of a rare alkylidene-alkene complex is possible by NMR spectioscopy using 22. The metallacyclobutane remains undetected (the ROMP propagation rate is higher than that of initiation). These ideas are supported by the kinetics studies of norbomene derivatives using 22.290... [Pg.367]


See other pages where Kinetics metallacyclobutane complexes is mentioned: [Pg.602]    [Pg.4087]    [Pg.4086]    [Pg.5]    [Pg.281]    [Pg.236]    [Pg.262]    [Pg.272]    [Pg.584]    [Pg.601]    [Pg.103]    [Pg.272]    [Pg.419]    [Pg.5]    [Pg.13]    [Pg.39]    [Pg.200]    [Pg.341]   


SEARCH



Complexation kinetics

Kinetic complexity

Kinetics complexes

Metallacyclobutane

Metallacyclobutane complexes

Metallacyclobutanes

Metallacyclobutanes complexes

© 2024 chempedia.info