Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic arheotrope

At kinetically controlled reactive conditions (Da = 1), Fig. 4.28(b) shows that the stable node moves into the composition triangle, as in reactive distillation (Fig. 4.27(b)). This point is termed the kinetic arheotrope because its location in the phase diagram depends on the membrane mass transfer resistances and also on the rate of chemical reaction. The kinetic arheotrope moves towards the B vertex with increasing C-selectivity of the membrane. At infinite Damkohler number, the system is chemical equilibrium-controlled (Fig. 4.28(c)), and therefore the arheotrope is located exactly on the chemical equilibrium curve. In this limiting case, it is called a reactive arheotrope . [Pg.133]

Reactive membrane separation [k]-matrix is a non-scalar matrix. This case was intensively studied by Huang et al. [20] ( kinetic arheotrope ). [Pg.137]

For a more generalized analysis of the qualitative influence of membranes on the singular points, the reactive membrane separation process is now considered with a nondiagonal [/c]-matrix. The condition for a kinetic arheotropes is given by... [Pg.138]

A singular point of reactive membrane separation should be denoted as kinetic arheotrope because it is a process phenomenon rather than a thermodynamic phenomenon. The condition for arheotropy can be elegantly expressed in terms of new transformed variables, which are a generalized formulation of the transformed composition variables first introduced to analyze reactive azeotropes. [Pg.144]


See other pages where Kinetic arheotrope is mentioned: [Pg.127]    [Pg.127]    [Pg.129]    [Pg.131]    [Pg.133]    [Pg.134]    [Pg.135]    [Pg.137]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.144]    [Pg.145]    [Pg.127]    [Pg.127]    [Pg.129]    [Pg.131]    [Pg.133]    [Pg.134]    [Pg.135]    [Pg.137]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.144]    [Pg.145]   
See also in sourсe #XX -- [ Pg.127 , Pg.133 , Pg.134 , Pg.137 , Pg.138 , Pg.144 ]




SEARCH



Arheotrope

© 2024 chempedia.info