Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketene chemistry carbon nucleophiles

The transition metal-catalyzed allylation of carbon nucleophiles was a widely used method until Grieco and Pearson discovered LPDE-mediated allylic substitutions in 1992. Grieco investigated substitution reactions of cyclic allyl alcohols with silyl ketene acetals such as Si-1 by use of LPDE solution [95]. The concentration of LPDE seems to be important. For example, the use of 2.0 M LPDE resulted in formation of silyl ether 88 with 86 and 87 in the ratio 2 6.4 1. In contrast, 3.0 m LPDE afforded an excellent yield (90 %) of 86 and 87 (5.8 1), and the less hindered side of the allylic unit is alkylated regioselectively. It is of interest to note that this chemistry is also applicable to cyclopropyl carbinol 89 (Sch. 44). [Pg.39]

Numerous carbon nucleophiles participate in the Nicholas reaction the most popular are electron rich aromatics, enamines, enol ethers, ketene acetals, alkenes, allylsilanes, allylstannanes, and organoaluminum compounds. Upon completion of the substitution reaction, the cobalt complex can be oxidatively removed with E, Fe(III), or Ce(IV). Additional chemistry based on cobalt-complexed alkynes, like the Pauson-Khand reaction, can also be performed to further increase molecular complexity. [Pg.289]

The chemistry of ketenes is dominated by their high reactivity most of them are not stable under normal conditions, many exist only as transient Species. Nucleophilic attack at the j -carbon, [2 + 2] cycloadditions, and ketene iasertion iato single bonds are the most important and widely used reactions of such compounds. [Pg.473]

Chemical Properties. The chemistry of ketenes is dominated by the strongly electrophilic j/)-hybridi2ed carbon atom and alow energy lowest unoccupied molecular orbital (LUMO). Therefore, ketenes are especially prone to nucleophilic attack at Cl and to [2 + 2] cycloadditions. Less frequent reactions are the so-called ketene iasertion, a special case of addition to substances with strongly polarized or polarizable single bonds (37), and the addition of electrophiles at C2. For a review of addition reactions of ketenes see Reference 8. [Pg.473]

The chemistry of iron vinylidene complexes is dominated by the electrophilicity of the carbon atom adjacent to the iron organometallic unit. While addition of water leads to an acyl complex (i.e., the reverse of the dehydration shown in equation 10), addition of an alcohol leads to a vinyl ether complex. Similarly, other iron vinyl complexes can be prepared by the addition of thiolate, hydride, or an organocuprate (Scheme 33). " The nucleophilic addition of imines gave enaminoiron intermediates that could be further elaborated into cyclic aminocarbenes. This methodology has been used to provide access to /3-lactams and ultimately penicillin analogs, and good diastereoselectivities were observed (6 1-15 1) (Scheme 34). 04 Iso, vinylidene complexes are intermediates in cyclizations of alkynyl irons with substituted ketenes, acid chlorides, and related electrophiles an example is shown (equation 11). These cyclizations led to the formation of a series of isolable and characterizable cyclic vinyl iron complexes. [Pg.2029]


See other pages where Ketene chemistry carbon nucleophiles is mentioned: [Pg.373]    [Pg.68]    [Pg.375]    [Pg.505]    [Pg.590]    [Pg.270]    [Pg.699]    [Pg.2028]    [Pg.590]    [Pg.137]   
See also in sourсe #XX -- [ Pg.308 , Pg.310 , Pg.310 ]




SEARCH



Carbon chemistry

Carbon nucleophile

Carbon nucleophiles

Carbonate chemistry

Carbonization chemistry

© 2024 chempedia.info