Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isotope actinium family

The French scientist A. Picard in 1917 suggested that a similar situation had to prevail at the origin of the family which was still known as the actinium family. His idea, which was confirmed only much later, was that the originator of this family was a third, still unknown uranium isotope... [Pg.194]

A radioactive element is an element that disintegrates spontaneously with the emission of various rays and particles. Most commonly, the term denotes radioactive elements such as radium, radon (emanation), thorium, promethium, uranium, which occupy a definite place in the periodic table because of their atomic number. The term radioactive element is also applied to the various other nuclear species, (which arc produced by the disintegration of radium, uranium, etc.) including (he members of the uranium, actinium, thorium, and neptunium families of radioactive elements, which differ markedly in their stability, and are isotopes of elements from thallium (atomic number 81) to uranium (atomic number... [Pg.332]

The natural radioelements are listed in Table 14.1. Isotopes of these elements are members of the uranium, actinium and thorium families (Table 1.2, and Tables 4.1 to 4.3). In the ores of U and Th the concentrations of natural radioelements are relatively high and proportional to the half-life. The average concentration of U in the earth s crust is about 2.9 mg/kg (ppm) and that of Th about 11 mg/kg (ppm). The... [Pg.277]

Now it is clear that radioelements are just isotopes of natural radioactive elements. The three emanations are the isotopes of the radioactive element radon, the number 86 in the periodic system. The radioactive families consist of the isotopes of uranium, thorium, polonium, and actinium. Later many stable elements were found to have isotopes. An interesting observation may be made here. When a stable element was discovered this meant simultaneous discovery of all its isotopes. But in the cases of natural radioactive elements individual isotopes were discovered first. The discovery of radioelements was the discovery of isotopes. This was a significant difference between stable and radioactive elements in connection with the search for them in nature. No wonder that the periodic system was badly strained when accommodation had to be found for the multitude of radioelements,—it was a classification of elements, after all, not isotopes. The discovery of the displacement law and isotopy greatly clarified the situation and paved the way for future advances. [Pg.192]

Just a year later three radiochemists from Vienna— S. Meyer, G. Hess, and F. Paneth—studied actinium-227, an isotope belonging to the family of uranium-235. They repeated their experiments and at last their sensitive instruments detected alpha particles of unknown origin. Alpha particles emitted by various isotopes have specific mean paths in air (of the order of a few centimetres). The mean path of the alpha particles in the experiments of the Austrian scientists was 3.5 cm. No known alpha-active isotope had such mean path of alpha particles. The scientists from the Vienna Radium Institute concluded that these particles were the product of alpha decay of the typically beta-active actinium-227. A product of this decay had to be an isotope of element 87. [Pg.219]


See other pages where Isotope actinium family is mentioned: [Pg.278]    [Pg.945]    [Pg.987]    [Pg.27]    [Pg.247]    [Pg.583]   
See also in sourсe #XX -- [ Pg.572 , Pg.573 ]




SEARCH



Actinium

© 2024 chempedia.info