Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic Fluids in the Mean Spherical Approximation

CLASSICAL IONIC FLUIDS IN THE MEAN SPHERICAL APPROXIMATION... [Pg.41]

Triolo, T., and Floriano, M.A., 1980, Classical ionic fluids in the mean spherical approximation "Advances in Solution Chemistry",... [Pg.142]

In the physical picture ion-pairs are just consequences of large values of the Mayer /-functions that describe the ion distribution [22], The technical consequence, however, is a major complication of the theory the high-temperature approximations of the /-functions applied, e.g. in the mean spherical approximation (MSA) or the Percus-Yevick approximation (PY) [25], suffice in simple fluids but not in ionic systems. [Pg.145]

From the various possible closures, the mean spherical approximation (MSA) [189] has found particularly wide attention in phase equilibrium calculations of ionic fluids. The Percus-Yevick (PY) closure is unsatisfactory for long-range potentials [173, 187, 190]. The hypemetted chain approximation (HNC), widely used in electrolyte thermodynamics [168, 173], leads to an increasing instability of the numerical algorithm as the phase boundary is approached [191]. There seems to be no decisive relation between the location of this numerical instability and phase transition lines [192-194]. Attempts were made to extrapolate phase transition lines from results far away, where the HNC is soluble [81, 194]. [Pg.29]


See other pages where Ionic Fluids in the Mean Spherical Approximation is mentioned: [Pg.43]    [Pg.45]    [Pg.47]    [Pg.49]    [Pg.51]    [Pg.53]    [Pg.55]    [Pg.57]    [Pg.59]    [Pg.61]    [Pg.63]    [Pg.66]    [Pg.43]    [Pg.45]    [Pg.47]    [Pg.49]    [Pg.51]    [Pg.53]    [Pg.55]    [Pg.57]    [Pg.59]    [Pg.61]    [Pg.63]    [Pg.66]    [Pg.54]    [Pg.1]    [Pg.359]   


SEARCH



Ionic fluid

Mean spherical approximation

Spherical approximation

The Approximations

© 2024 chempedia.info