Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Invariant center stable manifold

The above theorem is related to the map on the center manifold. Reconstructing the behavior of trajectories of the original map (11.6.2) is relatively simple. Here, if L < 0, then the fixed point is stable when /i < 0. When /i > 0 it becomes a saddle-focus with an m-dimensional stable manifold (defined by T = 0) and with a two-dimensional unstable manifold which consists of a part of the plane y = 0 bounded by the stable invariant curve C,... [Pg.250]

Here, the center manifold is defined by the equation y = 0. The surfaces x = constant are the leaves of the strong-stable invariant foliation In particular, x = 0 is the equation of the strong-stable manifold of O. At fi — Oj the function g (nonlinear part of the map on W ) has a strict extremum at X = 0. For more definiteness, we assume that it is a minimum, i.e. y(x, 0) > 0 when X 0. Thus, the saddle region on the cross-section corresponds to x > 0, and the node region corresponds to x < 0. Since the saddle-node disappears when /Lt > 0, it follows that y(x,/x) > 0 for all sufficiently small x and for all small positive //. [Pg.283]

The geometric version of TST laid out in Section II is centered around the NHIM that defines the dividing surface and its stable and unstable manifolds that act as separatrices. The NHIMs at different energies are in turn organized by the saddle point. It forms a fixed point of the dynamics—that is it is itself an invariant object—and it provides the Archimedean point in which the geometric phase-space structure is anchored. [Pg.201]

Transversely to the center manifold, another invariant manifold passes through the point 0(0,0). It is called strongly stable and, as usual, we denote it by Its equation is given by a = y), where (y) vanishes at... [Pg.85]

Next, let us straighten the strong stable invariant foliation. The leaves of the foliation are given by x Q y], x p), (p = constant where x is the coordinate of intersection of a leaf with the center manifold Q is a C -function (it is C -smooth with respect to y). The straightening is achieved via a coordinate transformation Xh- which brings the invariant foliation to the form x = constant,

[Pg.286]

Starting with any (x, y), a trajectory of system (12.4.8) converges typically to an attractor of the fast system corresponding to the chosen value of x. This attractor may be a stable equilibrium, or a stable periodic orbit, or of a less trivial structure — we do not explore this last possibility here. When an equilibrium state or a periodic orbit of the fast system is structurally stable, it depends smoothly on x. Thus, we obtain smooth attractive invariant manifolds of system (12.4.8) equilibrium states of the fast system form curves Meq and the periodic orbits form two-dimensional cylinders Mpo, as shown in Fig. 12.4.6. Locally, near each structurally stable fast equilibrium point, or periodic orbit, such a manifold is a center manifold with respect to system (12.4.8). Since the center manifold exists in any nearby system (see Chap. 5), it follows that the smooth attractive invariant manifolds Meqfe) and Mpo( ) exist for all small e in the system (12.4.7) [48]. [Pg.309]

In the original proof the system under consideration was assumed to be analytic. Later on, other simplified proofs have been proposed which are based on a reduction to a non-local center manifold near the separatrix loop (such a center manifold is, generically, 3-dimensional if the stable characteristic exponent Ai is real, and 4-dimensional if Ai = AJ is complex) and on a smooth linearization of the reduced system near the equilibrium state (see [120, 147]). The existence of the smooth invariant manifold of low dimension is important here because it effectively reduces the dimension of the problem. ... [Pg.380]


See other pages where Invariant center stable manifold is mentioned: [Pg.74]    [Pg.163]    [Pg.77]    [Pg.174]    [Pg.289]   
See also in sourсe #XX -- [ Pg.281 , Pg.284 ]




SEARCH



Invariant center manifold

Invariant manifolds

Invariant stable

Manifolding

Stable invariant manifold

Stable manifold

© 2024 chempedia.info