Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermediates Diazocarbonyl compounds

Diazoester aziridinations may be carried out in ionic liquids [39]. Other carbene equivalents have been investigated in aziridination reactions, though not to the same extent as diazocarbonyl compounds. Dibromo(tert-butyldimethylsilyl)me-thyllithium, for example, aziridinates N-arylimines to give l-bromo-2-aryl-3-silyla-ziridines these compounds function as useful synthetic intermediates, reacting... [Pg.131]

The role of the rhodium is probably two-fold. Initially due to its Lewis acidity it reversibly forms a complex with the nitrile nitriles are known to complex to the free axial coordination sites in rhodium(II) carboxylates as evidenced by the change of colour upon addition of a nitrile to a solution of rhodium(II) acetate, and by X-ray crystallography. Secondly the metal catalyses the decomposition of the diazocarbonyl compound to give a transient metallocarbene which reacts with the nitrile to give a nitrile ylide intermediate. Whether the nitrile ylide is metal bound or not is unclear. [Pg.14]

Based on a detailed investigation, it was concluded that the exceptional ability of the molybdenum compounds to promote cyclopropanation of electron-poor alkenes is not caused by intermediate nucleophilic metal carbenes, as one might assume at first glance. Rather, they seem to interfere with the reaction sequence of the uncatalyzed formation of 2-pyrazolines (Scheme 18) by preventing the 1-pyrazoline - 2-pyrazoline tautomerization from occurring. Thereby, the 1-pyrazoline has the opportunity to decompose purely thermally to cyclopropanes and formal vinylic C—H insertion products. This assumption is supported by the following facts a) Neither Mo(CO)6 nor Mo2(OAc)4 influence the rate of [3 + 2] cycloaddition of the diazocarbonyl compound to the alkene. b) Decomposition of ethyl diazoacetate is only weakly accelerated by the molybdenum compounds, c) The latter do not affect the decomposition rate of and product distribution from independently synthesized, representative 1-pyrazolines, and 2-pyrazolines are not at all decomposed in their presence at the given reaction temperature. [Pg.128]

Cu(II) EPR signal in nitriles as solvent as well as by polarographic measurements 144>. Similarly, the EPR signal disappeared when Cu(OTf)2 was used for catalytic cyclo-propanation of olefins with diazoesters 64). In these cases, no evidence for radical-chain reactions has been reported, however. The Cu(acac)2- or Cu(hfacac)2-eatalyzed decomposition of N2CHCOOEt, N2C(COOEt)2, MeCOC(N2)COOEt and N2CHCOCOOEt in the presence of cyclopropyl-substituted ethylenes did not furnish any products derived from a cyclopropylcarbinyl - butenyl rearrangement128. These results rule out the possible participation of electron-transfer processes and radical intermediates which would arise from interaction between the olefin and a radical species derived from the diazocarbonyl compound. [Pg.245]

The metal-carbenoid intermediates, especially ones derived from a-diazocarbonyl compounds, are electrophilic, and electron-rich olefins in general react more easily with the carbenoid intermediates than electron-deficient olefins. For the interaction of metal carbenoid and olefin, three different mechanisms have been proposed, based on the stereochemistry of the reactions and the reactivity of the substrates (Figure 12) 21 (i) a nonconcerted, two-step process via a metallacyclobutane 226,264... [Pg.257]

Ylide formation, and hence X-H bond insertion, generally proceeds faster than C-H bond insertion or cyclopropanation [1176], 1,2-C-H insertion can, however, compete efficiently with X-H bond insertion [1177]. One problem occasionally encountered in transition metal-catalyzed X-H bond insertion is the deactivation of the (electrophilic) catalyst L M by the substrate RXH. The formation of the intermediate carbene complex requires nucleophilic addition of a carbene precursor (e.g. a diazocarbonyl compound) to the complex Lj,M. Other nucleophiles present in the reaction mixture can compete efficiently with the carbene precursor, or even lead to stable, catalytically inactive adducts L M-XR. For this reason carbene X-H bond insertion with substrates which might form a stable complex with the catalyst (e.g. amines, imidazole derivatives, thiols) often require larger amounts of catalyst and high reaction temperatures. [Pg.194]

Although the present procedure illustrates the formation of the diazoacetic ester without isolation of the intermediate ester of glyoxylic acid />-toluenesulfonylhydrazone, the two geometric isomers of this hydrazone can be isolated if only one molar equivalent of triethylamine is used in the reaction of the acid chloride with the alcohol. The extremely mild conditions required for the further conversion of these hydrazones to the diazo esters should be noted. Other methods for decomposing arylsulfonyl-hydrazones to form diazocarbonyl compounds have included aqueous sodium hydroxide, sodium hydride in dimethoxyethane at 60°, and aluminum oxide in methylene chloride or ethyl acetate." Although the latter method competes in mildness and convenience with the procedure described here, it was found not to be applicable to the preparation of aliphatic diazoesters such as ethyl 2-diazopropionate. Hence the conditions used in the present procedure may offer a useful complement to the last-mentioned method when the appropriate arylsulfonylhydrazone is available. [Pg.14]

Photochemical or thermal extrusion of molecular nitrogen from ot-diazocarbonyl compounds generates a-carbonylcarbenes. These transient species possess a resonance contribution from a 1,3-dipolar (303, Scheme 8.74) or 1,3-diradical form, depending on their spin state. The three-atom moiety has been trapped in a [3 + 2] cycloaddition fashion, but this reaction is rare because of the predominance of a fast rearrangement of the ketocarbene into a ketene intermediate. There are a steadily increasing number of transition metal catalyzed reactions of diazocarbonyl compounds with carbon-carbon and carbon-heteroatom double bonds, that, instead of affording three-membered rings, furnish hve-membered heterocycles which... [Pg.604]

The reaction of a-diazocarbonyl compounds with nitriles produces 1,3-oxazoles under thermal (362,363) and photochemical (363) conditions. Catalysis by Lewis acids (364,365), or copper salts (366), and rhodium complexes (367) is usually much more effective. This latter transformation can be regarded as a formal [3 + 2] cycloaddition of the ketocarbene dipole across the C=N bond. More than likely, the reaction occurs in a stepwise manner. A nitrilium ylide (319) (Scheme 8.79) that undergoes 1,5-cyclization to form the 1,3-oxazole ring has been proposed as the key intermediate. [Pg.608]

By 1960, there was recognition that copper salts could cause the loss of dinitrogen from diazocarbonyl compounds with addition of the resulting carbene intermediate to a carbon-carbon double bond to form a cyclopropane product. That this reaction, first reported by G. Stork in 1961 (Eq. 6), could occur in an intramolecular fashion and thus avoid the formation of isomers, ushered in the first significant synthetic... [Pg.565]

Ethers, sulfides, amines, carbonyl compounds, and imines are among the frequently encountered Lewis bases in the ylide formation from such metal carbene complex. The metal carbene in the ylide formation can be divided into stable Fisher carbene complex and unstable reactive metal carbene intermediates. The reaction of the former is thus stoichiometric and the latter is usually a transition metal complex-catalyzed reaction of a-diazocarbonyl compounds. The decomposition of a-diazocarbonyl compounds with catalytic transition metal complex has been the most widely used approach to generate reactive metal carbenes. For compressive reviews, see Refs 1,1a. [Pg.151]

In consideration of conceivable strategies for the more direct construction of these derivatives, nitriles can be regarded as simple starting materials with which the 3+2 cycloaddition of acylcarbenes would, in a formal sense, provide the desired oxazoles. Oxazoles, in fact, have previously been obtained by the reaction of diazocarbonyl compounds with nitriles through the use of boron trifluoride etherate as a Lewis acid promoter. Other methods for attaining oxazoles involve thermal, photochemical, or metal-catalyzed conditions.12 Several recent studies have indicated that many types of rhodium-catalyzed reactions of diazocarbonyl compounds proceed via formation of electrophilic rhodium carbene complexes as key intermediates rather than free carbenes or other types of reactive intermediates.13 If this postulate holds for the reactions described here, then the mechanism outlined in Scheme 2 may be proposed, in which the carbene complex 3 and the adduct 4 are formed as intermediates.14... [Pg.235]

Catalysts include copper pyrazolylborates (TpJCutQHt), Ru11 porphyrins, and Rh11 carboxylates.98 Metal carbene intermediates are likely such species are also present in the ruthenium-catalyzed stereoselective coupling of a-diazocarbonyl compounds 99... [Pg.1269]

The cyclopropane synthesis can be performed by thermal, photochemical or transition metal catalyzed decomposition of the diazo compound in the presence of an alkene (or arene, hetarene). Due to the differing nature of the intermediates involved, the efficiency and the stereochemical result of each method usually vary. Altogether, the transition metal mediated cyclopropanation is by far the most versatile and most often used procedure. In the following sections, the three methods will be discussed separately. The following types of a-diazocarbonyl compounds A have been successfully applied in cyclopropane synthesis ... [Pg.425]

Photochemical decomposition of a-diazocarbonyl compounds in the presence of excess alkene constitutes a useful route to acylcyclopropanes 2 via acylcarbene intermediates 1. [Pg.435]

The metal-carbene complexes postulated as intermediates in transition metal-catalyzed reactions of diazo compounds are electrophilic species (especially if they are derived from a-diazocarbonyl compounds). Accordingly, electron-rich olefins are the most suitable substrates for copper-catalyzed cyclopropanations, whereas electron-poor substrates such as a,P-unsaturated carbonyl compounds in general are not sufficiently reactive. [Pg.492]


See other pages where Intermediates Diazocarbonyl compounds is mentioned: [Pg.101]    [Pg.79]    [Pg.202]    [Pg.481]    [Pg.565]    [Pg.558]    [Pg.317]    [Pg.538]    [Pg.101]    [Pg.952]    [Pg.565]    [Pg.565]    [Pg.101]    [Pg.296]    [Pg.565]    [Pg.197]    [Pg.794]    [Pg.896]    [Pg.897]    [Pg.425]    [Pg.444]    [Pg.77]    [Pg.200]    [Pg.243]    [Pg.306]    [Pg.219]    [Pg.523]    [Pg.425]    [Pg.444]   


SEARCH



Compound intermediates

Diazocarbonyl

Diazocarbonyls

© 2024 chempedia.info