Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectra intense peaks

TABLE 10. Distribution of cyclic products generated in the thermal degradation of PDMS. Values normalized relative to D4 for comparison. Peak intensities from mass spectrum at 470 °C for pure PDMS, at 350°C for PDMS containing NaOH"... [Pg.1325]

Multivariate data analysis usually starts with generating a set of spectra and the corresponding chemical structures as a result of a spectrum similarity search in a spectrum database. The peak data are transformed into a set of spectral features and the chemical structures are encoded into molecular descriptors [80]. A spectral feature is a property that can be automatically computed from a mass spectrum. Typical spectral features are the peak intensity at a particular mass/charge value, or logarithmic intensity ratios. The goal of transformation of peak data into spectral features is to obtain descriptors of spectral properties that are more suitable than the original peak list data. [Pg.534]

During the course of biochemical studies (138). the mass spectrum of 2-acetamidothiazole was recorded its main peaks are the molecular ion (m/e= 142, relative intensity = 26%) and fragments 100 (100), 58 (2. 5), and 43 (39). For 2-acetamido-5-bromothiazole the main peak results again from the loss of C2H2O by the molecular ion. 2-AcetyIacet-amido-4-methylthiazole (2S) exhibits significant loss of from the... [Pg.29]

The mass spectrum of benzene is relatively simple and illustrates some of the mfor matron that mass spectrometry provides The most intense peak m the mass spectrum is called the base peak and is assigned a relative intensity of 100 Ion abundances are pro portional to peak intensities and are reported as intensities relative to the base peak The base peak m the mass spectrum of benzene corresponds to the molecular ion (M" ) at miz = 78... [Pg.569]

The peak at m/z 77 m the mass spectrum of chlorobenzene m Figure 13 41 is attributed to this fragmentation Because there is no peak of significant intensity two atomic mass units higher we know that the cation responsible for the peak at m/z 77 cannot contain chlorine... [Pg.570]

Some classes of compounds are so prone to fragmentation that the molecular ion peak IS very weak The base peak m most unbranched alkanes for example is m/z 43 which IS followed by peaks of decreasing intensity at m/z values of 57 71 85 and so on These peaks correspond to cleavage of each possible carbon-carbon bond m the mol ecule This pattern is evident m the mass spectrum of decane depicted m Figure 13 42 The points of cleavage are indicated m the following diagram... [Pg.570]

FIGURE 13 43 The mass spectrum of propylbenzene The most intense peak is... [Pg.571]

Three of the most intense peaks in the mass spectrum of ] 2 methyl 2 butanol appear at m/z 59 70 and 73 Explain the origin of these peaks J... [Pg.653]

The most intense peaks in the mass spectrum of an alcohol correspond to the ton formed according to carbon-carbon cleavage of the type shown ... [Pg.657]

Mass Spectrometry Aldehydes and ketones typically give a prominent molecular ion peak m their mass spectra Aldehydes also exhibit an M— 1 peak A major fragmentation pathway for both aldehydes and ketones leads to formation of acyl cations (acylium ions) by cleavage of an alkyl group from the carbonyl The most intense peak m the mass spectrum of diethyl ketone for example is m z 57 corresponding to loss of ethyl radi cal from the molecular ion... [Pg.741]

Base peak (Section 13 22) The most intense peak in a mass spectrum The base peak is assigned a relative intensity of 100 and the intensities of all other peaks are cited as a per centage of the base peak... [Pg.1277]

The mass spectrum is a fingerprint for each compound because no two molecules are fragmented and ionized in exactly the same manner on electron-impact ionization. In reporting mass spectra the data are normalized by assigning the most intense peak (denoted as base peak) a value of 100. Other peaks are reported as percentages of the base peak. [Pg.815]

Base peak. The peak in a mass spectrum corresponding to the m/z value that has the greatest intensity. This term can be applied to the spectra of a pure substance or mixtures. [Pg.436]

Intensity relative to base peak. The ratio of intensity of a particular peak in a mass spectrum to the intensity of the mass peak of the greatest intensity. This ratio is generally equated to the normalized ratio of the heights of the respective peaks in the mass spectrum, with the height of the base peak being taken as 100. [Pg.436]

The submitters report that this product solidifies when cooled and melts at 21-22 and that the product is stable when stored in a refrigerator. The product exhibits infrared absorption (carbon tetrachloride) attributable to C=0 stretching at 1810 and 1765 cm. and a proton magnetic resonance singlet at B 1.50 (carbon tetrachloride). The mass spectrum of the product exhibits the following relatively abundant fragment peaks m/e (relative intensity), 60(10), 59(99), 57(34), 56(86), 55(47), 50(21), 44(100), 43(30), 41(91), 40(27), and 39(61). [Pg.49]

A SSIMS spectrum, like any other mass spectrum, consists of a series of peaks of dif ferent intensity (i. e. ion current) occurring at certain mass numbers. The masses can be allocated on the basis of atomic or molecular mass-to-charge ratio. Many of the more prominent secondary ions from metal and semiconductor surfaces are singly charged atomic ions, which makes allocation of mass numbers slightly easier. Masses can be identified as arising either from the substrate material itself from deliberately introduced molecular or other species on the surface, or from contaminations and impurities on the surface. Complications in allocation often arise from isotopic effects. Although some elements have only one principal isotope, for many others the natural isotopic abundance can make identification difficult. [Pg.94]

Three of the most intense peaks in the mass spectrum of... [Pg.653]

In the mass spectrum (Figure 8) of the corresponding ketal of 5-deoxy-D-xt/Zo-hexose, 5-deoxy-l,2-0-isopropylidene-D- rt/Zo-hexofuranose (11), the peak from C-4-C-5 cleavage, m/e 159, is of minor relative intensity. Since the ions at m/e 159 are the same from both isomers, 10 and 11, the intensity difference must be attributable to the lower stability of the primary radical formed from C-5 of 11 compared with the secondary radical from 10 ... [Pg.230]

The mass spectrum of a compound is typically presented as a bar graph with masses (m/z values) on the x axis and intensity, or relative abundance of ions of a given m/z striking the detector, on the y axis. The tallest peak, assigned an intensity of 100%, is called the base peak, and the peak that corresponds to the unfragmented cation radical is called the parent peak or the molecular ion (M+). Figure 12.2 shows the mass spectrum of propane. [Pg.410]

Base peak (Section 12.1) The most intense peak in a mass spectrum. [Pg.1236]

The mass spectra of l-acyl-l//-l-benzazepines have been recorded.23 The mass spectrum of 3-mesyl-3/7-3-benzazepine shows an intense base peak at m/e = 142duetothebcnzazepinylium ion and a peak (51 %) at m/e — 115 (-HCN) which is attributed to the indenium cation.26 Fragmentation patterns for 1H- and 5/7-2-benzazepines40 and for 5//-dibenz[c,e]azepine5 are available. The electron-impact induced fragmentation pattern of 5//-dibenz[6,/]azepine displays an intense molecular ion as the base peak, and a moderately intense (M + 1) peak.5 ... [Pg.210]

In summary, if the unknown mass spectrum has an intense peak at m/z 59 and an abundant m/z 72 with an odd molecular ion, this suggests a primary amide. [Pg.44]

Figure 18.2 is the mass spectrum of a branched hydrocarbon. Note the intensity of the molecular ion peak and the presence of an M - 15 peak. The M - 15 peak is typical, particularly if the side chain is a methyl group. The position of the side chain is indicated by the m/z 112 and 113 ions (CH3(CH2)5CHCH3). Usually the site of branching is more difficult to establish. [Pg.85]

The mass spectra of all three isomers are different. The ortho isomer loses 17 Daltons (OH, small peak) from its intense molecular ion. The m- and p-isomers lose 16 Daltons from their molecular ions and can be distinguished by comparing the relative abundances of the m/z 65 fragment ion versus their molecular ions. The m/z 65 ion is the most abundant ion in the mass spectrum of the m-isomer (see Figure 22.2), while the molecular ion at m/z 138 is the most abundant ion in the mass spectrum of the p-isomer. [Pg.95]

A mass spectrum is a graphic representation of the ions observed by the mass spectrometer over a specified range of m/z values. The output is in the form of an x,y plot in which the x-axis is the mass-to-charge scale and the y-axis is the intensity scale. If an ion is observed at an m/z value, a line is drawn representing the response of the detector to that ionic species. The mass spectrum will contain peaks that represent fragment ions as well as the molecular ion (see Figure 1.3). Interpretation of a mass spectrum identifies, confirms, or determines the quantity of a specific compound. [Pg.204]


See other pages where Mass spectra intense peaks is mentioned: [Pg.96]    [Pg.168]    [Pg.126]    [Pg.638]    [Pg.641]    [Pg.81]    [Pg.569]    [Pg.256]    [Pg.265]    [Pg.20]    [Pg.593]    [Pg.127]    [Pg.178]    [Pg.1032]    [Pg.157]    [Pg.242]    [Pg.213]    [Pg.38]    [Pg.208]   
See also in sourсe #XX -- [ Pg.170 ]




SEARCH



Mass intensity

Mass spectrum 1 peaks

Peak intensities

Peaks intense

© 2024 chempedia.info