Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Instantaneous absorption models model parameter estimation

Bolus rV (Instantaneous Absorption) 10.11.4 Estimating Model Parameters from... [Pg.200]

Standard linear regression and method of residual analyses of two-compartment IV infusion (zero-order absorption) data is limited to samples collected during the postinfusion period. Plasma concentrations during the infusion period do not lend themselves to a linear analysis for a two-compartment model. Estimation of parameters from measured postinfusion plasma samples is quite similar to the two-compartment bolus IV (instantaneous absorption) case. Proper parameter evaluation ideally requires at least three to five plasma samples be collected during the distribution phase, and five to seven samples be collected during the elimination phase. Area under the curve (AUC) calculations can also be used in evaluating some of the model parameters. [Pg.250]

The one-compartment bolus IV injection model is mathematically the simplest of aU PK models. Drug is delivered directly into the systemic circulation by a rapid injection over a very short period of time. Thus the bolus rV injection offers a near perfect example of an instantaneous absorption process. Representation of the body as a single compartment implies that the distribution process is essentially instantaneous as well. The exact meaning of the assumptions inherent in this model are described in the next section. Model equations are then introduced that allow the prediction of plasma concentrations for drugs with known PK parameters, or the estimation of PK parameters from measured plasma concentrations. Situations in which the one-compartment instantaneous absorption model can be used to reasonably approximate other types of drug delivery are described later in Section 10.7.5. [Pg.220]




SEARCH



Instantaneous

Model parameter

Model parameters, estimates

Models absorption

Parameter estimation

© 2024 chempedia.info