Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy formation

IR spectroscopy can be used to characterise not only different rubbers, but also to understand the structural changes due to the chemical modification of the rubbers. The chemical methods normally used to modify rubbers include hydrogenation, halogenation, hydrosilylation, phosphonylation and sulfonation. The effects of oxidation, weathering and radiation on the polymer structure can be studied with the help of infrared spectroscopy. Formation of ionic polymers and ionomeric polyblends behaving as thermoplastic elastomers can be followed by this method. Infrared spectroscopy in conjunction with other techniques is an important tool to characterise polymeric materials. [Pg.157]

A well-developed series of complexes with rich MLCT excited-state behaviour are Re(I)-diimine complexes. [Re(bpy)(CO)3Cl] was the first transition metal complex used as a catalyst for CO2 reduction to CO, proposed by Lehn and Ziessel [41]. This series of complexes is particularly amenable to study of the excited state by time-resolved infrared spectroscopy. Formation of the MLCT Re bpy excited state leads to a reduction of the electron density on the metal centre. Consequently, d n backbonding from Re ti-orbitals to the antibonding n orbitals of CO ligands is reduced, resulting in an increase of the energy of the stretching vibrations, v(CO), by several tens of wavenumbers in the excited state if... [Pg.116]

The formation of such materials may be monitored by several techniques. One of the most useful methods is and C-nmr spectroscopy where stable complexes in solution may give rise to characteristic shifts of signals relative to the uncomplexed species (43). Solution nmr spectroscopy has also been used to detect the presence of soHd inclusion compound (after dissolution) and to determine composition (host guest ratio) of the material. Infrared spectroscopy (126) and combustion analysis are further methods to study inclusion formation. For general screening purposes of soHd inclusion stmctures, the x-ray powder diffraction method is suitable (123). However, if detailed stmctures are requited, the single crystal x-ray diffraction method (127) has to be used. [Pg.74]

High quahty SAMs of alkyltrichlorosilane derivatives are not simple to produce, mainly because of the need to carefully control the amount of water in solution (126,143,144). Whereas incomplete monolayers are formed in the absence of water (127,128), excess water results in facile polymerization in solution and polysiloxane deposition of the surface (133). Extraction of surface moisture, followed by OTS hydrolysis and subsequent surface adsorption, may be the mechanism of SAM formation (145). A moisture quantity of 0.15 mg/100 mL solvent has been suggested as the optimum condition for the formation of closely packed monolayers. X-ray photoelectron spectroscopy (xps) studies confirm the complete surface reaction of the —SiCl groups, upon the formation of a complete SAM (146). Infrared spectroscopy has been used to provide direct evidence for the hiU hydrolysis of methylchlorosilanes to methylsdanoles at the soHd/gas interface, by surface water on a hydrated siUca (147). [Pg.537]

The formation of a sulfoxide group is confirmed by infrared spectroscopy absorption bonds typical of a sulfonic group can be observed in 1120 -i- 1160 and 1310... [Pg.79]

Adsorption phenomena from solutions onto sohd surfaces have been one of the important subjects in colloid and surface chemistry. Sophisticated application of adsorption has been demonstrated recently in the formation of self-assembhng monolayers and multilayers on various substrates [4,7], However, only a limited number of researchers have been devoted to the study of adsorption in binary hquid systems. The adsorption isotherm and colloidal stabihty measmement have been the main tools for these studies. The molecular level of characterization is needed to elucidate the phenomenon. We have employed the combination of smface forces measmement and Fomier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR) to study the preferential (selective) adsorption of alcohol (methanol, ethanol, and propanol) onto glass surfaces from their binary mixtures with cyclohexane. Om studies have demonstrated the cluster formation of alcohol adsorbed on the surfaces and the long-range attraction associated with such adsorption. We may call these clusters macroclusters, because the thickness of the adsorbed alcohol layer is about 15 mn, which is quite large compared to the size of the alcohol. The following describes the results for the ethanol-cycohexane mixtures [10],... [Pg.3]

The treatment of LB films of copper behenate (10-50 layers) with H2S gas resulted in formation of the semiconductor CU2S [177]. In this case, the LB films of behenic acid alone were formed and then exposed to solutions of copper chloride. Conversion of the carboxyl groups to carboxylate groups upon copper complexation was confirmed by infrared spectroscopy. Resistivity measurements versus temperature confirmed the formation of semiconducting CU2S in one case, and showed a linear increase in log(R) versus IT K). All of the samples became insulators on exposure to air maintaining the conductivity required storage under vacuum. The formation of CuiS sheets in some of the sample was concluded from optical microscopy and resistivity data. [Pg.91]

Nicholson, J. W., Brookman, P. J., Lacy, O. M., Sayers, G. S. Wilson, A. D. (1988a). A study of the nature and formation of zinc polyacrylate cement using Fourier transform infrared spectroscopy. Journal of Biomedical Materials Research, 22, 623-31. [Pg.88]

Many divalent and trivalent oxides form cements with PAA (Crisp, Prosser Wilson, 1976 Hodd Reader, 1976 Hornsby, 1977). Cement formation was observed using infrared spectroscopy and physical and chemical tests. Of these cements that of ZnO (Smith, 1968) was the first and remains by far the most important it is given detailed treatment in Section 5.7. [Pg.102]

Figure 5.11 (Crisp Wilson, 1974b) shows the time-dependent variation of the concentration of soluble ions in setting and hardening cements. Note that the concentrations of aluminium, calcium and fluoride rise to maxima as they are released from the glass. After the maximum is reached the concentration of soluble ions decreases as they are precipitated. Note that this process is much more rapid for calcium than for aluminium and the sharp decline in soluble calcium corresponds to gelation. This indication is supported by information from infrared spectroscopy which showed that gelation (initial set) was caused by the precipitation of calcium polyacrylate. This finding was later confirmed by Nicholson et al. (1988b) who, using Fourier transform infrared spectroscopy (FTIR), found that calcium polyacrylate could be detected in the cement paste within one minute of mixing the cement. There was no evidence for the formation of any aluminium polyacrylate within nine minutes and substantial amounts are not formed for about one hour (Crisp et al, 1974). Figure 5.11 (Crisp Wilson, 1974b) shows the time-dependent variation of the concentration of soluble ions in setting and hardening cements. Note that the concentrations of aluminium, calcium and fluoride rise to maxima as they are released from the glass. After the maximum is reached the concentration of soluble ions decreases as they are precipitated. Note that this process is much more rapid for calcium than for aluminium and the sharp decline in soluble calcium corresponds to gelation. This indication is supported by information from infrared spectroscopy which showed that gelation (initial set) was caused by the precipitation of calcium polyacrylate. This finding was later confirmed by Nicholson et al. (1988b) who, using Fourier transform infrared spectroscopy (FTIR), found that calcium polyacrylate could be detected in the cement paste within one minute of mixing the cement. There was no evidence for the formation of any aluminium polyacrylate within nine minutes and substantial amounts are not formed for about one hour (Crisp et al, 1974).
The setting reaction of dental silicate cement was not understood until 1970. An early opinion, that of Steenbock (quoted by Voelker, 1916a,b), was that setting was due to the formation of calcium and aluminium phosphates. Later, Ray (1934) attributed setting to the gelation of silicic acid, and this became the received opinion (Skinner Phillips, 1960). Wilson Batchelor (1968) disagreed and concluded from a study of the acid solubility that the dental silicate cement matrix could not be composed of silica gel but instead could be a silico-phosphate gel. However, infrared spectroscopy failed to detect the presence of P-O-Si and P-O-P bonds (Wilson Mesley, 1968). [Pg.243]

Ellis Wilson (1991, 1992) examined cement formation between a large number of metal oxides and PVPA solutions. They concluded that setting behaviour was to be explained mainly in terms of basicity and reactivity, noting that cements were formed by reactive basic or amphoteric oxides and not by inert or acidic ones (Table 8.3). Using infrared spectroscopy they found that, with one exception, cement formation was associated with salt formation the phosphonic add band at 990 cm diminished as the phosphonate band at 1060 cm" developed. The anomalous result was that the acidic boric oxide formed a cement which, however, was soluble in water. This was the result, not of an add-base readion, but of complex formation. Infrared spectroscopy showed a shift in the P=0 band from 1160 cm" to 1130 cm", indicative of an interaction of the type... [Pg.311]

These cements set in 3-5 to 56 minutes (at 37 °C). Infrared spectroscopy showed that as the cement set there was loss of acid carbonyl groups and OH groups associated with calcium hydroxide, and simultaneously formation of ionic carboxylate groups and hydrogen-bonded OH groups. [Pg.351]

Infrared spectroscopy has also been employed to follow the formation of acetaldehyde and acetic acid on Pt during ethanol electro-oxidation. On the basal planes, acetaldehyde could be observed starting at about 0.4 V (vs. RHE), well before the onset of CO oxidation, while the onset of acetic acid formation closely follows CO2 formation [Chang et al., 1990 Xia et al., 1997]. This is readily explained by the fact that both CO oxidation and acetic acid formation require a common adsorbed co-reactant, OHads, whereas the formation of acetaldehyde from ethanol merely involves a relatively simple proton-electron transfer. [Pg.194]

Much detailed characterization of the kinetics of NO reduction in atmospheric environments, that is, at pressures up to 240mbar, has also been performed by Goodman and co-workers on palladium single crystals [65]. They have determined by using in-situ infrared spectroscopy that, under reaction temperatures below 500 K and pressure ratios Pco/Pno > 1.5, the conversion of NO + CO mixtures on Pd(lll) is accompanied by the formation of an isocyanate (—NCO) intermediate (Figure 3.7) [66]. The formation of... [Pg.82]

There is great interest in developing molecular precursors for boron-nitrogen polymers and boron nitride solid state materials, and one general procedure is described in this report. Combinations of B-trichloroborazene and hexamethyldisilazane lead to formation of a gel which, upon thermolysis, gives hexagonal boron nitride. The BN has been characterized by infrared spectroscopy, x-ray powder diffraction and transmission electron microscopy. [Pg.378]

The objective of this study is to investigate the mechanism of propylene oxidation by a transient infrared spectroscopic technique over Rh/Al203. This technique allows simultaneous measurement of the dynamics of adsorbed species by in situ infrared spectroscopy and the product formation profile by mass spectrometry. [Pg.404]

Although acetone was a major product, it was not observed by infrared spectroscopy. Flowing helium/acetone over the catalyst at room temperature gave a prominent carbonyl band at 1723 cm 1 (not show here). In this study, a DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) cell was placed in front of a fixed reactor DRIFTS only monitored the adsorbed and gaseous species in the front end of the catalyst bed. The absence of acetone s carbonyl IR band in Figure 3 and its presence in the reactor effluent suggest the following possibilities (i) acetone formation from partial oxidation is slower than epoxidation to form PO and/or (ii) acetone is produced from a secondary reaction of PO. [Pg.407]


See other pages where Infrared spectroscopy formation is mentioned: [Pg.1286]    [Pg.297]    [Pg.411]    [Pg.269]    [Pg.299]    [Pg.376]    [Pg.864]    [Pg.297]    [Pg.5]    [Pg.90]    [Pg.236]    [Pg.117]    [Pg.137]    [Pg.200]    [Pg.250]    [Pg.349]    [Pg.355]    [Pg.446]    [Pg.116]    [Pg.134]    [Pg.10]    [Pg.402]    [Pg.416]    [Pg.128]    [Pg.320]   
See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Formation spectroscopy

© 2024 chempedia.info