Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inexact pfaffian differential equation

As we have seen before, exact differentials correspond to the total differential of a state function, while inexact differentials are associated with quantities that are not state functions, but are path-dependent. Caratheodory proved a purely mathematical theorem, with no reference to physical systems, that establishes the condition for the existence of an integrating denominator for differential expressions of the form of equation (2.44). Called the Caratheodory theorem, it asserts that an integrating denominator exists for Pfaffian differentials, Sq, when there exist final states specified by ( V, ... x )j that are inaccessible from some initial state (.vj,.... v )in by a path for which Sq = 0. Such paths are called solution curves of the differential expression The connection from the purely mathematical realm to thermodynamic systems is established by recognizing that we can express the differential expressions for heat transfer during a reversible thermodynamic process, 6qrey as Pfaffian differentials of the form given by equation (2.44). Then, solution curves (for which Sqrev = 0) correspond to reversible adiabatic processes in which no heat is absorbed or released. [Pg.67]

It can be shown mathematically that a two-dimensional Pfaffian equation (1.27) is either exact, or, if it is inexact, an integrating denominator can always be found to convert it into a new, exact, differential. (Such Pfaffians are said to be integrable.) When three or more independent variables are involved, however, a third possibility can occur the Pfaff differential can be inexact, but possesses no integrating denominator.x Caratheodory showed that expressions for SqKV appropriate to thermodynamic systems fall into the class of inexact but integrable differential expressions. That is, an integrating denominator exists that can convert the inexact differential into an exact differential. [Pg.66]


See other pages where Inexact pfaffian differential equation is mentioned: [Pg.252]    [Pg.252]    [Pg.1245]    [Pg.252]    [Pg.252]    [Pg.1245]    [Pg.67]    [Pg.78]   
See also in sourсe #XX -- [ Pg.252 ]

See also in sourсe #XX -- [ Pg.252 ]




SEARCH



Inexact

Inexact differential

Pfaffian

© 2024 chempedia.info