Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iminium ions chiral

In all the reactions described so far a chiral Lewis acid has been employed to promote the Diels-Alder reaction, but recently a completely different methodology for the asymmetric Diels-Alder reaction has been published. MacMillan and coworkers reported that the chiral secondary amine 40 catalyzes the Diels-Alder reaction between a,/ -unsaturated aldehydes and a variety of dienes [59]. The reaction mechanism is shown in Scheme 1.73. An a,/ -unsaturated aldehyde reacts with the chiral amine 40 to give an iminium ion that is sufficiently activated to engage a diene reaction partner. Diels-Alder reaction leads to a new iminium ion, which upon hydrolysis af-... [Pg.46]

The chiral (V-camphanoyl iminium ion 7, prepared by hydride abstraction from 2-camphanoyl-l,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline 6 (see Appendix) with triphenylcarbenium te-trafluoroborate, reacts with silyl enol ethers to give 1-substituted tetrahydroisoquinoline derivatives with reasonable diastereoselectivity, 0°. On addition of titanium(IV) chloride, prior to the addition of the silyl enol ether, the diastereoselectivity gradually rises to an optimum at 2.5 equivalents of the Lewis acid, but the yield drops by 20%. [Pg.828]

Scheme 19 Asymmetric synthesis of 2-(l-aminoalkyl)pyrrolidines and 2,2 -dipyrrolidines from chiral imines and iminium ions... Scheme 19 Asymmetric synthesis of 2-(l-aminoalkyl)pyrrolidines and 2,2 -dipyrrolidines from chiral imines and iminium ions...
Scheme 23 Double asymmetric induction in the addition of Grignard reagents to chiral a-amino imines and a-amino iminium ions... Scheme 23 Double asymmetric induction in the addition of Grignard reagents to chiral a-amino imines and a-amino iminium ions...
Hepatite Virus NS3/4A having the pyrrolidine-5,5-trans-lactam skeleton [83], starting from (R)- and (S)-methionine, respectively. The key step is the addition of the proper silyl ketene acetal to an iminium ion, e.g., that generated by treatment of the intermediate 177 with boron trifluoride, which provided the adduct 178 with better diastereoselectivity than other Lewis acids. Inhibitors of hepatitis C virus NS3/4A were efficiently prepared by a similar route from (S)-methionine [83]. The addition of indole to a chiral (z-amino iminium ion was a completely diastereoselective step in a reported synthesis of tilivalline, a natural molecule which displays strong cytotoxicity towards mouse leukemia L 1210 [84]. [Pg.33]

Clerici and Porta reported that phenyl, acetyl and methyl radicals add to the Ca atom of the iminium ion, PhN+Me=CHMe, formed in situ by the titanium-catalyzed condensation of /V-methylanilinc with acetaldehyde to give PhNMeCHMePh, PhNMeCHMeAc, and PhNMeCHMe2 in 80% overall yield.83 Recently, Miyabe and co-workers studied the addition of various alkyl radicals to imine derivatives. Alkyl radicals generated from alkyl iodide and triethylborane were added to imine derivatives such as oxime ethers, hydrazones, and nitrones in an aqueous medium.84 The reaction also proceeds on solid support.85 A-sulfonylimines are also effective under such reaction conditions.86 Indium is also effective as the mediator (Eq. 11.49).87 A tandem radical addition-cyclization reaction of oxime ether and hydrazone was also developed (Eq. 11.50).88 Li and co-workers reported the synthesis of a-amino acid derivatives and amines via the addition of simple alkyl halides to imines and enamides mediated by zinc in water (Eq. 11.51).89 The zinc-mediated radical reaction of the hydrazone bearing a chiral camphorsultam provided the corresponding alkylated products with good diastereoselectivities that can be converted into enantiomerically pure a-amino acids (Eq. 11.52).90... [Pg.358]

Triisopropylsilyloxyfurans were effective nucleophiles for the vinylogous Mannich addition to iminium ions that were formed by Rh2(cap)4-catalyzed oxidation of N-alkyl groups by THYDRO <06JA5648>. A stereoselective addition of 2-trimethylsilyloxyfurans to aryl aldehydes-derived aldimines employing a chiral phosphine/Ag complex as catalyst was developed <06AG(I)7230>. The prototypical example is shown below. [Pg.178]

The stereoselective addition of the titanium enolate of A-acetyl-4-phenyl-l,3-thiazolidine-2-thione 153 to the cyclic A-acyl iminium ion 154 is utilized in the synthesis of (-)-stemoamide, a tricyclic alkaloid <06JOC3287>. The iminium ion addition product 155 undergoes magnesium bromide-catalyzed awtz-aldol reaction with cinnamaldehyde 156 to give adduct 157, which possesses the required stereochemistry of all chiral centers for the synthesis of (-)-stemoamide. [Pg.255]

An enantioselective organocatalytic 1,3-DC reaction, based on the activation of a,fi-unsaturated aldehydes through the reversible formation of iminium ions with chiral imidazolidinones 100, was described. Good levels of asymmetric induction and diastereocontrol were achieved (up to 94% ee and 94 6 dr) <00JA9874>. [Pg.223]

Another representative example is the preparation of (3A,5/ ,7a/ )-5-(benzotriazol-l-yl)-3-phenyl[2,l-A oxazolopyr-rolidine 238 that was synthesized from benzotriazole, (A)-phenylglycinol, and 2,5-dimethoxy-tetrahydrofuran at room temperature. This reaction entailed the formation of two heterocyclic rings and two new chiral centers in one step (Equation 33) by double Robinson-Schopf condensation of the dialdehyde with the amino group and benzotriazole intercepting the initially formed iminium ion (Equation 36) <1999JOC1979>. [Pg.76]

CuBr/QUINAP System The CuBr/QUlNAP system was initially used in the enan-tioselective synthesis of proparyl amines via the reaction of alkynes and enamines (Scheme 5.5). It was rationalized that the enamines reacted with protons in terminal alkynes in the presence of copper catalyst to form zwitterionic intermediates in which both the generated iminiums and alkyne anions coordinate to the copper metal center. After an intermolecular transfer of the alkyne moiety to the iminium ion, the desired products were released and the catalyst was regenerated. The combination of CuBr as catalyst and the chiral ligand QUEMAP is crucial for the good reactivities and enantioselectivities seen in the reaction. Another potential... [Pg.132]

The Catalysis Concept of Iminium Activation In 2000, the MacMillan laboratory disclosed a new strategy for asymmetric synthesis based on the capacity of chiral amines to function as enantioselective catalysts for a range of transformations that traditionally use Lewis acids. This catalytic concept was founded on the mechanistic postulate that the reversible formation of iminium ions from a,p-unsaturated aldehydes and amines [Eq. (11.10)] might emulate the equilibrium dynamics and 7i-orbital electronics that are inherent to Lewis acid catalysis [i.e., lowest unoccupied molecular orbital (LUMO)-lowering activation] [Eq. (11.9)] ... [Pg.319]

A further example of the use of a chiral anion in conjunction with a chiral amine was recently reported by Melchiorre and co-workers who described the asymmetric alkylation of indoles with a,P-unsaturated ketones (Scheme 65) [212]. The quinine derived amine salt of phenyl glycine (159) (10-20 mol%) provided the best platform with which to perform these reactions. Addition of a series of indole derivatives to a range of a,P-unsaturated ketones provided access to the adducts with excellent efficiency (56-99% yield 70-96% ee). The substrates adopted within these reactions is particularly noteworthy. For example, use of aryl ketones (R = Ph), significantly widens the scope of substrates accessible to iminium ion activation. Expansion of the scope of nucleophiles to thiols [213] and oximes [214] with similar high levels of selectivity suggests further discoveries will be made. [Pg.331]

Rueping has recently reported an interesting alknylation reaction of a-imino esters employing both phosphoric acid Ip and AgOAc as orthogonal cocatalysts [35]. As seen in the catalytic cycle in Scheme 5.21, generation of chiral iminium ion pair I nucleophilic and alkynyl-silver species II proceeds simultaneously. Subsequent nucelophilic addition completes both parallel cycles [36]. [Pg.87]

In 2004, List reported that several ammonium salts including dibenzylammonium trifluoroacetate catalyzed the chemoselective 1,4 reduction of a, 5-unsaturated aldehydes with Hantszch esters as hydride sources [40]. It is assumed that substrate activation via iminium ion formation results in selective 1,4 addition of hydride. Subsequently, List [41] and MacMillan [42] reported asymmetric versions of this reaction promoted by chiral imidazoUdinone salts. In this context, several reports of this metal-free reductive process catalyzed by chiral phosphoric acids have appeared in the recent literature. [Pg.89]

Cheap and readily available L-proline has been used numerous times for the intermediate and reversible generation of chiral iminium ions from a,/ -unsaturated carbonyl compounds. For example, Yamaguchi et al. reported in 1993 that the rubidium salt of L-proline catalyzes the addition of di-iso-propyl malonate to the acyclic Michael acceptors 40a-c (Scheme 4.13), with enantiomeric excesses as high as 77% [22], With 2-cycloheptenone and 2-cyclohexenone as substrates ca 90% yield and ee of 59% and 49% were obtained. Later the enantioselectivity of this process was increased to a maximum of 88% ee in the addition of di-tert-butyl malonate to the E-pentenone 40a in the presence of 20 mol% Rb-L-prolinate and 20 mol% CsF [23], Taguchi and Kawara employed the L-proline-derived ammonium salts 41a and... [Pg.55]


See other pages where Iminium ions chiral is mentioned: [Pg.307]    [Pg.826]    [Pg.29]    [Pg.347]    [Pg.72]    [Pg.261]    [Pg.453]    [Pg.320]    [Pg.281]    [Pg.283]    [Pg.283]    [Pg.295]    [Pg.330]    [Pg.332]    [Pg.90]    [Pg.98]    [Pg.882]    [Pg.140]    [Pg.11]    [Pg.235]    [Pg.728]    [Pg.410]    [Pg.2]    [Pg.46]    [Pg.277]    [Pg.287]   


SEARCH



Chiral ions

Iminium ion

© 2024 chempedia.info