Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ideal solutions nonelectrolyte, thermodynamic properties

As in the nonelectrolyte case, the problem of representing the thermodynamic properties of electrolyte solutions is best regarded as that of finding a suitable expression for the non-ideal part of the chemical potential, or the excess Gibbs energy, as a function of composition, temperature, dielectric constant and any other relevant variables. [Pg.61]

Chapters 17 and 18 use thermodynamics to describe solutions, with nonelectrolyte solutions described in Chapter 17 and electrolyte solutions described in Chapter 18. Chapter 17 focuses on the excess thermodynamic properties, with the properties of the ideal and regular solution compared with the real solution. Deviations from ideal solution behavior are correlated with the type of interactions in the liquid mixture, and extensions are made to systems with (liquid + liquid) phase equilibrium, and (fluid -I- fluid) phase equilibrium when the mixture involves supercritical fluids. [Pg.447]

In this chapter, we apply some of the general principles developed heretofore to a study of the bulk thermodynamic properties of nonelectrolyte solutions. In Sec. 11-1 we discuss conventions for the description of chemical potentials in nonelectrolyte solutions and introduce the concept of an ideal component. In Sec. 11-2, we demonstrate how the concept of solution molecular weight can be introduced into thermodynamics in a natural fashion. Section 11-3 is devoted to a study of the properties of ideal solutions. In Sec. 11-4, we discuss the properties of solutions that can be considered to be ideal when they are dilute but are not necessarily ideal when they are more concentrated. In Sec. 11-5, regular solutions are defined and some of their properties are derived. Section 11-6 is devoted to a study of some of the approximations that prove useful in the derivation of the properties of real solutions. Finally, in Sec. 11-7, some of the experimental techniques utilized for the measurement of chemical potentials and activity coefficients of components in solution are described. [Pg.160]

Chapters 7 to 9 apply the thermodynamic relationships to mixtures, to phase equilibria, and to chemical equilibrium. In Chapter 7, both nonelectrolyte and electrolyte solutions are described, including the properties of ideal mixtures. The Debye-Hiickel theory is developed and applied to the electrolyte solutions. Thermal properties and osmotic pressure are also described. In Chapter 8, the principles of phase equilibria of pure substances and of mixtures are presented. The phase rule, Clapeyron equation, and phase diagrams are used extensively in the description of representative systems. Chapter 9 uses thermodynamics to describe chemical equilibrium. The equilibrium constant and its relationship to pressure, temperature, and activity is developed, as are the basic equations that apply to electrochemical cells. Examples are given that demonstrate the use of thermodynamics in predicting equilibrium conditions and cell voltages. [Pg.686]

In this chapter we discuss some of the properties of electrolyte solutions. In Sec. 12-1, the chemical potential and activity coefficient of an electrolyte are expressed in terms of the chemical potentials and activity coefficients of its constituent ions. In addition, the zeroth-order approximation to the form of the chemical potential is discussed and the solubility product rule is derived. In Sec. 12-2, deviations from ideality in strong-electrolyte solutions are discussed and the results of the Debye-Hiickel theory are presented. In Sec. 12-3, the thermodynamic treatment of weak-electrolyte solutions is given and use of strong-electrolyte and nonelectrolyte conventions is discussed. [Pg.189]


See other pages where Ideal solutions nonelectrolyte, thermodynamic properties is mentioned: [Pg.325]    [Pg.662]    [Pg.287]    [Pg.17]   


SEARCH



Ideal solution

Ideal solution: properties

Ideal solutions thermodynamics

Ideality, thermodynamic

Nonelectrolytes

Solute property

Solutes nonelectrolytes

Solution ideal solutions

Solution nonelectrolyte

Solution properties

Solutions nonelectrolytes

Thermodynamically ideal solutions

© 2024 chempedia.info