Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

6-Hydroxy aldehydes, dehydration reduction

On a related front, the reactions of carbonyl compounds with metaliated derivatives of 2-methylthia-zoline furnish adducts (85). Although the initial nucleophilic addition occurs smoothly with a wide variety of aldehydes and ketones, the intermediate P-hydroxythiazolines (85) suffer thermal reversion upon attempted purification by distillation. Moreover, attempted cleavage of the corresponding P-hydroxythia-zolidines, which are readily produced from (85) upon dissolving metal reduction (Al-Hg), leads to the formation of p-hydroxy aldehydes only in simple systems numerous complications arising from dimerization, dehydration and retroaldol processes of the products usually intervene. Consequently it is necessary to protect the initial 1,2-adducts (85 = H) as the corresponding 0-methoxymethyl ether... [Pg.494]

The zwitterion (6) can react with protic solvents to produce a variety of products. Reaction with water yields a transient hydroperoxy alcohol (10) that can dehydrate to a carboxyUc acid or spHt out H2O2 to form a carbonyl compound (aldehyde or ketone, R2CO). In alcohoHc media, the product is an isolable hydroperoxy ether (11) that can be hydrolyzed or reduced (with (CH O) or (CH2)2S) to a carbonyl compound. Reductive amination of (11) over Raney nickel produces amides and amines (64). Reaction of the zwitterion with a carboxyUc acid to form a hydroperoxy ester (12) is commercially important because it can be oxidized to other acids, RCOOH and R COOH. Reaction of zwitterion with HCN produces a-hydroxy nitriles that can be hydrolyzed to a-hydroxy carboxyUc acids. Carboxylates are obtained with H2O2/OH (65). The zwitterion can be reduced during the course of the reaction by tetracyanoethylene to produce its epoxide (66). [Pg.494]

The Ci9 conjugated aldehyde component was reacted with the lithium derivative of this Cg acetal in ammonia to afford an hydroxy compound which was dehydrated under mild acidic conditions to the fully conjugated C25 substance. Chain extension with ethyl vinyl ether in the presence of boron trifluoride-zinc chloride and mild acidic deethanolation gave the Cjt acetal which was then converted with prop-1-enyl ethyl ether under the same conditions to the required C30 structure of dehydro-p-apocarotenal. Lindlar partial reduction followed by isomerisation afforded the final product. The route is shown in Scheme 14b Scheme 14b... [Pg.753]

Apart from the technical route described to p-apo-8 -carotenal, readily available vitamin A alcohol (Cjo) has served as an intermediate in the form of the phosphonium salt by reaction with the monodiethyl acetal of a Cio dial (ref. 54). The required Cjo monodiethylacetal was obtained (ref.5, p409) by the reaction of the mono aldehyde-protected derivative, the enol ether of methylmalonaldehyde, (C4) with the acetylenic Grignard reagent from trans 3-methyl-2-penten-4-yn-l-ol (C ) followed by acidic dehydration and partial reduction with Lindlar catalyst to give firstly 8-hydroxy-2,6-dimethylocta-2, 4,6-triene-l-al (Cio). Protection of the hydroxyl group by acetylation in pyridine solution with acetyl chloride and formation of the diethyl acetal with ethyl orthoformate followed by hydrolysis of the acetyl group and oxidation afforded the final CIO aldehyde component (D)shown in Scheme 15a. [Pg.754]


See other pages where 6-Hydroxy aldehydes, dehydration reduction is mentioned: [Pg.37]    [Pg.476]    [Pg.280]    [Pg.411]    [Pg.494]    [Pg.130]    [Pg.688]    [Pg.45]    [Pg.200]    [Pg.52]    [Pg.331]    [Pg.379]    [Pg.139]    [Pg.113]    [Pg.124]    [Pg.400]    [Pg.367]    [Pg.141]    [Pg.68]    [Pg.146]    [Pg.76]    [Pg.217]    [Pg.281]    [Pg.290]    [Pg.543]    [Pg.26]    [Pg.36]   
See also in sourсe #XX -- [ Pg.150 ]




SEARCH



6-Hydroxy aldehydes, dehydration

Aldehydes dehydration

Aldehydes hydroxy

Aldehydes reduction

Aldehydes reductive

Dehydration reduction

Hydroxy, dehydration

© 2024 chempedia.info