Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen acidic solution

Nishihara C and Nozoye H 1995 influence of underpotentiai deposition of copper with submonolayer coverage on hydrogen adsorption at the stepped surfaces Pt(955), Pt(322) and Pt(544) in sulfuric acid solution J. Electroanal. Chem. 396 139-42... [Pg.2756]

When either hydrogen ions or hydroxide ions participate in a redox half-reaction, then clearly the redox potential is alTected by change of pH. Manganate(Vir) ions are usually used in well-acidified solution, where (as we shall see in detail later) they oxidise chlorine ions. If the pH is increased to make the solution only mildly acidic (pH = 3-6), the redox potential changes from 1.52 V to about 1.1 V, and chloride is not oxidised. This fact is of practical use in a mixture of iodide and chloride ions in mildly acid solution. manganate(VII) oxidises only iodide addition of acid causes oxidation of chloride to proceed. [Pg.102]

Arsenic present only in traces (in any form) can be detected by reducing it to arsine and then applying tests for the latter. In Marsh s test, dilute sulphuric acid is added dropwise through a thistle funnel to some arsenic-free zinc in a flask hydrogen is evolved and led out of the flask by a horizontal delivery tube. The arsenic-containing compound is then added to the zinc-acid solution, and the delivery tube heated in the middle. If arsenic is present, it is reduced to arsine by the zinc-acid reaction, for example ... [Pg.254]

When hydrogen sulphide is bubbled into an acidic solution of an antimony or a bismuth salt an orange precipitate, SbjSs, or a brown precipitate, BijS, is obtained. Bismuth(III) sulphide, unlike antimony(IIl) sulphide, is insoluble in lithium hydroxide. [Pg.254]

Hydrogen peroxide has both oxidising properties (when it is converted to water) and reducing properties (when it is converted to oxygen) the half-reactions are (acid solution) ... [Pg.280]

Hence the orange colour of a dichromate is converted to the green colour of the hydrated chromium(III) ion, Cr ", and sulphur is precipitated when hydrogen sulphide is passed through an acid solution.)... [Pg.283]

These are practically insoluble in water, are not hydrolysed and so may be prepared by addition of a sufficient concentration of sulphide ion to exceed the solubility product of the particular sulphide. Some sulphides, for example those of lead(II), copper(II) and silver(I), have low solubility products and are precipitated by the small concentration of sulphide ions produced by passing hydrogen sulphide through an acid solution of the metal salts others for example those of zincfll), iron(II), nickel(II) and cobalt(II) are only precipitated when sulphide ions are available in reasonable concentrations, as they are when hydrogen sulphide is passed into an alkaline solution. [Pg.288]

In what way does a solution of hydrogen peroxide react with (a) chlorine water, (b) potassium permanganate solution, (c) potassium dichromate solution, (d) hydrogen sulphide 50 cm of an aqueous solution of hydrogen peroxide were treated with an excess of potassium iodide and dilute sulphuric acid the liberated iodine was titrated with 0.1 M sodium thiosulphate solution and 20.0 cm were required. Calculate the concentration of the hydrogen peroxide solution in g 1" ... [Pg.309]

Cadmiumdl) sulphide, CdS, is a canary-yellow solid, precipitated by addition of hydrogen sulphide (or sulphide ion) to an acid solution... [Pg.434]

Both aliphatic and aromatic nitro-compounds can be readily reduced in acid solution to the corresponding primary amine. Thus when a mixture of nitrobenzene and tin is treated with hydrochloric acid, the tin dissolves to give stannous chloride, SnCh, which in these circumstances then reacts with more acid to give stannic chloride, SnCl, and the nascent hydrogen produced from... [Pg.161]

Dissolve 5 g. (5 ml.) of aniline in 50 ml. of warm dilute sulphuric acid in a conical flask and add 50 ml. of water. Place a thermometer in the solution, immerse the flask in a mixture of ice and water, and cool until the temperature of the stirred solution falls to 5°. Dissolve 4-5 g. of powdered sodium nitrite in 20 ml. of water, and add this solution in small quantities (about 2-3 ml. at a time) to the cold aniline sulphate solution. Keep tne latter well shaken and maintain the temperature at about 5° (see p. 183). When all the sodium nitrite solution has been added, transfer about 5 ml. of the cold solution to a test-tube for each of the following reactions. The remainder of the diazonium hydrogen sulphate solution must be kept in ice-water until required, and then when all the reactions have been carried out, the solution should be poured down the sink. [Pg.187]

Fenton s reagent. To a solution of tartaric acid or a tartrate add 1 drop of freshly prepared ferrous sulphate solution, i drop of hydrogen peroxide solution and then excess of NaOH solution an intense violet coloration is produced, due to the ferric salt of dihydroxyfumaric acid, HOOC C(OH) C(OH)COOH. [Pg.352]

Diphenic acid. Phenanthrene upon oxidation in acetic acid solution at 85° with 30 per cent, hydrogen peroxide gives diphenic acid (diphenyl-2 2 -di-carboxyHc acid) no phenanthraquinone is formed under these experimental conditions. The reaction is essentially an oxidation of phenanthrene with peracetic acid. (For another method of preparation, see Section I V,74.)... [Pg.755]

Lead dioxide in acetic acid solution gives lead tetra acetate which oxidises hydrogen bromide (and also hydrogen iodide), but has practically no cflFect under the above experimental conditions upon hydrogen chloride. [Pg.1042]

To absolution of 1.00 mol of ethyl lithium in 800-900 ml of diethyl ether (see Chapter II, Exp. 1) was added, with cooling between -20 and -10°C, 0.50 nol of dry propargyl alcohol, dissolved in 100 ml of diethyl ether. Subsequently 1.1 mol of trimethylchlorosilane was introduced over a period of 25 min with cooling between -15 and +5°C. After stirring for an additional 2 h at about 30°C the suspension was poured into a solution of 30 g of acetic acid in 150 ml of water. After stirring for 1 h at room temperature the layers were separated and the aqueous layer v/as extracted four times with diethyl ether. The combined ethereal solutions were washed with sodium hydrogen carbonate solution in order to neutralize acetic acid, and were then dried over magnesium sulfate. The diethyl ether was removed by evaporation in a water-pump vacuum and the residue distilled... [Pg.58]

The reaction takes place extremely rapidly and if D2O is present in excess all the alcohol is con verted to ROD This hydrogen-deuterium exchange can be catalyzed by either acids or bases If D30 is the catalyst in acid solution and DO the catalyst in base wnte reasonable reaction mech anisms for the conversion of ROH to ROD under conditions of (a) acid catalysis and (b) base catalysis... [Pg.186]

Unlike the addition of concentrated sulfuric acid to form alkyl hydrogen sulfates this reaction is carried out m a dilute acid medium A 50% water/sulfuric acid solution is often used yielding the alcohol directly without the necessity of a separate hydrolysis step Markovmkov s rule is followed... [Pg.247]

Destruction of the masking ligand by chemical reaction may be possible, as in the oxidation of EDTA in acid solutions by permanganate or another strong oxidizing agent. Hydrogen peroxide and Cu(II) ion destroy the tartrate complex of aluminum. [Pg.1170]

In the presence of acid, solutions of iodide are oxidized by hydrogen peroxide... [Pg.661]

For acidic solutions, balance the hydrogen in each half-reaction by adding H3O+ and H2O to opposite sides of the reaction for basic solutions, add OH and H2O to opposite sides of the reaction. [Pg.748]

The reduction potentials for the actinide elements ate shown in Figure 5 (12—14,17,20). These ate formal potentials, defined as the measured potentials corrected to unit concentration of the substances entering into the reactions they ate based on the hydrogen-ion-hydrogen couple taken as zero volts no corrections ate made for activity coefficients. The measured potentials were estabhshed by cell, equihbrium, and heat of reaction determinations. The potentials for acid solution were generally measured in 1 Af perchloric acid and for alkaline solution in 1 Af sodium hydroxide. Estimated values ate given in parentheses. [Pg.218]

Germanium tetrafluoride produces hydrogen fluoride in aqueous acidic solutions. Hydrogen fluoride is toxic and very corrosive. The OSHA permissible exposure limit (17) and the American Conference of Governmental Industrial Hygienists (ACGIH) TLV for fluoride is 2.5 mg/m of air (18). [Pg.182]

Silver difluoride [7783-95-1], AgF2, is a black crystalline powder. It has been classified as a hard fluorinating agent (3) which Hberates iodine from KI solutions and o2one from dilute aqueous acid solutions on heating. It spontaneously oxidizes xenon gas to Xe(II) in anhydrous hydrogen fluoride solutions (20). [Pg.235]

Nitrosyl chloride (178), nitrosyl chloride—hydrogen fluoride (NOF -3HF, NOF -6HF) (179), nitrous acid—hydrogen fluoride solutions (180,181), or nitrogen trioxide (prepared in situ from nitric oxide and oxygen) (27) can be used in place of sodium nitrite in the dia2oti2ation step. [Pg.322]

Most hafnium compounds requite no special safety precautions because hafnium is nontoxic under normal exposure. Acidic compounds such as hafnium tetrachloride hydroly2e easily to form strongly acidic solutions and to release hydrogen chloride fumes, and these compounds must be handled properly. Whereas laboratory tests in which soluble hafnium compounds were injected into animals did show toxicity, feeding test results indicated essentially no toxicity when hafnium compounds were taken orally (33,34). [Pg.443]

Hafnium carbide is inert to most reagents at room temperature, but is dissolved by hydrofluoric acid solutions which also contain an oxidising agent. Above 250°C, hafnium carbide reacts exothermically with halogens to form hafnium tetrahaUde, and above 500°C, with oxygen to form hafnium dioxide. At higher temperatures in a flow of hydrogen, hafnium carbide slowly loses some of its carbon. [Pg.445]

Hydrogen Chloride—Water System. Hydrogen chloride is highly soluble in water and this aqueous solution does not obey Henry s law at ah concentrations. Solubhity data are summarized in Table 5. The relationship between the pressure and vapor composition of unsaturated aqueous hydrochloric acid solutions is given in Reference 12. The vapor—Hquid equiHbria for the water—hydrogen chloride system at pressures up to 1632 kPa and at temperatures ranging from —10 to +70° C are documented in Reference 13. [Pg.439]


See other pages where Hydrogen acidic solution is mentioned: [Pg.191]    [Pg.191]    [Pg.112]    [Pg.210]    [Pg.211]    [Pg.260]    [Pg.32]    [Pg.107]    [Pg.240]    [Pg.372]    [Pg.513]    [Pg.445]    [Pg.768]    [Pg.1078]    [Pg.121]    [Pg.97]    [Pg.208]    [Pg.48]    [Pg.341]    [Pg.81]    [Pg.182]    [Pg.172]    [Pg.446]    [Pg.454]    [Pg.472]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Hydrogen solution

© 2024 chempedia.info