Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrobromination, radical examples

Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977]. Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977].
Figure 4. Examples of low-temperature limit of rate constant of solid-state chamical reactions obtained in different laboratories of the USSR, United States, Canada, and Japan (1) formaldehyde polymerization chain growth (USSR, 1973 [56]) (2) reduction of coordination Fe-CO bond in heme group of mioglobin broken by laser pulse (United States, 1975 [65]) (3) H-atom transfer between neighboring radical pairs in y-irradiated dimethylglyoxime crystal (Japan, 1977, [72], (4, 5) H-atom abstraction by methyl radicals from neighboring molecules of glassy methanol matrix (4) and ethanol matrix (5) (Canada, United States, 1977 [11, 78]) (6) H-atom transfer under sterically hampered isomerization of aryl radicals (United States, 1978 [73]) (7) C-C bond formation in cyclopentadienyl biradicals (United States, 1979 [111]) (8) chain hydrobromination of ethylene (USSR, 1978 [119]) (9) chain chlorination of ethylene (USSR, 1986 [122]) (10) organic radical chlorination by molecular chlorine (USSR, 1980 [124,125]) (11) photochemical transfer of H atoms in doped monocrystals of fluorene (B. Prass, Y. P. Colpa, and D. Stehlik, J. Chem. Phys., in press.). Figure 4. Examples of low-temperature limit of rate constant of solid-state chamical reactions obtained in different laboratories of the USSR, United States, Canada, and Japan (1) formaldehyde polymerization chain growth (USSR, 1973 [56]) (2) reduction of coordination Fe-CO bond in heme group of mioglobin broken by laser pulse (United States, 1975 [65]) (3) H-atom transfer between neighboring radical pairs in y-irradiated dimethylglyoxime crystal (Japan, 1977, [72], (4, 5) H-atom abstraction by methyl radicals from neighboring molecules of glassy methanol matrix (4) and ethanol matrix (5) (Canada, United States, 1977 [11, 78]) (6) H-atom transfer under sterically hampered isomerization of aryl radicals (United States, 1978 [73]) (7) C-C bond formation in cyclopentadienyl biradicals (United States, 1979 [111]) (8) chain hydrobromination of ethylene (USSR, 1978 [119]) (9) chain chlorination of ethylene (USSR, 1986 [122]) (10) organic radical chlorination by molecular chlorine (USSR, 1980 [124,125]) (11) photochemical transfer of H atoms in doped monocrystals of fluorene (B. Prass, Y. P. Colpa, and D. Stehlik, J. Chem. Phys., in press.).
Since the bromine atom adds to the less substituted carbon atom of the double bond, thus generating the more substituted radical intermediate, the regioselectivity of radical chain hydrobromination is opposite to that of ionic addition. The work on the radical mechanism originated in studies of the addition of hydrogen bromide that were undertaken to understand why Markownikoff s rule was violated under certain circumstances. The cause was found to be conditions, such as peroxide impurities or light, which initiated the radical chain process. Some examples of radical chain additions of hydrogen bromide to alkenes are included in Scheme 12.5. [Pg.695]


See also in sourсe #XX -- [ Pg.1036 ]




SEARCH



Hydrobromination

Radicals examples

© 2024 chempedia.info