Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Highest occupied molecular orbital structures

The most extensive calculations of the electronic structure of fullerenes so far have been done for Ceo- Representative results for the energy levels of the free Ceo molecule are shown in Fig. 5(a) [60]. Because of the molecular nature of solid C o, the electronic structure for the solid phase is expected to be closely related to that of the free molecule [61]. An LDA calculation for the crystalline phase is shown in Fig. 5(b) for the energy bands derived from the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for Cgo, and the band gap between the LUMO and HOMO-derived energy bands is shown on the figure. The LDA calculations are one-electron treatments which tend to underestimate the actual bandgap. Nevertheless, such calculations are widely used in the fullerene literature to provide physical insights about many of the physical properties. [Pg.47]

Draw a Lewis structure for singlet methylene, CH2 (all the electrons in singlet methylene are spin-paired). Ho many electrons remain after all bonds have been formei Where are the extra electrons located, in the plane the molecule or perpendicular to the plane Examine t highest-occupied molecular orbital (HOMO) of methyle to tell. [Pg.36]

What happens to electrons which are left over after all bonds have been formed Do they associate with individual atoms or are they spread uniformly throughout the molecule Draw a Lewis structure for trimethylamine. How many electrons are needed to make bonds How many are left over Where are they Display the highest-occupied molecular orbital (HOMO) for trimethylamine. Where is it located ... [Pg.43]

Next, examine the equilibrium structure of acetamide (see also Chapter 16, Problem 8). Are the two NH protons in different chemical environments If so, would you expect interconversion to be easy or difficult Calculate the barrier to interconversion (via acetamide rotation transition state). Rationalize your result. Hint Examine the highest-occupied molecular orbital (HOMO) for both acetamide and its rotation transition state. Does the molecule incorporate a n bond. If so, is it disrupted upon rotation ... [Pg.148]

Conjugated polymers are generally poor conductors unless they have been doped (oxidized or reduced) to generate mobile charge carriers. This can be explained by the schematic band diagrams shown in Fig. I.23 Polymerization causes the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the monomer to split into n and n bands. In solid-state terminology these are the valence and conduction bands, respectively. In the neutral forms shown in Structures 1-4, the valence band is filled, the conduction band is empty, and the band gap (Eg) is typically 2-3 eV.24 There is therefore little intrinsic conductivity. [Pg.551]

Each energy level in the band is called a state. The important quantity to look at is the density of states (DOS), i.e. the number of states at a given energy. The DOS of transition metals are often depicted as smooth curves (Fig. 6.10), but in reality DOS curves show complicated structure, due to crystal structure and symmetry. The bands are filled with valence electrons of the atoms up to the Fermi level. In a molecule one would call this level the highest occupied molecular orbital or HOMO. [Pg.225]

The model clusters were chosen in accordance with the structure of PANI proposed in Refs. [1, 3], The present model of PANI also takes into account that under the influence of dopants (in this particular case, protons and anions (chlorine ions) which form bonds to PANI nitrogen), the spins of the highest occupied molecular orbital (HOMO) become unpaired, and PANI changes to triplet state. It should be noted that only in this state there is a considerable increase in PANI conductivity. [Pg.114]


See other pages where Highest occupied molecular orbital structures is mentioned: [Pg.412]    [Pg.40]    [Pg.412]    [Pg.200]    [Pg.273]    [Pg.507]    [Pg.1300]    [Pg.123]    [Pg.476]    [Pg.774]    [Pg.953]    [Pg.19]    [Pg.164]    [Pg.63]    [Pg.20]    [Pg.10]    [Pg.82]    [Pg.214]    [Pg.373]    [Pg.63]    [Pg.387]    [Pg.212]    [Pg.143]    [Pg.154]    [Pg.61]    [Pg.193]    [Pg.259]    [Pg.921]    [Pg.10]    [Pg.51]    [Pg.305]    [Pg.500]    [Pg.630]    [Pg.200]    [Pg.74]    [Pg.13]    [Pg.142]    [Pg.246]   
See also in sourсe #XX -- [ Pg.131 , Pg.132 ]

See also in sourсe #XX -- [ Pg.131 , Pg.132 ]

See also in sourсe #XX -- [ Pg.131 , Pg.132 ]




SEARCH



Highest

Highest occupied molecular

Highest occupied molecular orbital

Molecular orbital occupied

Molecular orbitals highest occupied

Molecular orbitals structures

Occupied molecular orbitals

Occupied orbital

Occupied orbitals

Orbitals highest occupied

Orbits structure

© 2024 chempedia.info