Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hematite sedimentation rate

The rate of the biotic reduction of Fe oxides by a strain of Corynehacterium under 02-free conditions followed the order natural ferrihydrite > synthetic goethite > hematite (Fischer (1988) (Fig. 12.29) in accordance with the sequence in reducibility by Fe-reducing bacteria isolated from a eutrophic lake sediment (Jones et al., 1983). Iron from ferrihydrite reduced by Shewandla alga was found to be isotopically lighter than that of the ferrihydrite Fe by a 5 ( Fe/ " Fe) of 1.3 %o This difference may be used to trace the distribution of microorganisms in modern and ancient earth (Beard etal. 1999). [Pg.344]

From these data it follows that when iron is precipitated in acid and neutral environments the first products should be X-ray-amorphous highly dispersed iron hydroxides, which in the course of time acquire the crystal structure of goethite or hematite. The mechanism of this process depends on kinetic factors (rate of oxidation of Fe " ), form of migration of the iron (ionic or colloidal), and acidity of the parent solution. In neutral environments ferrihydrite possibly is formed as an intermediate metastable phase, especially if the iron migrates in colloidal form or in the form of the Fe ion. The products of diagenesis of such a sediment may be both goethite (in the case of low Eh values typical of the Precambrian iron-ore process) and dispersed hematite (in the case of deposition of the oxide facies of BIF). [Pg.161]

At temperatures greater than a 100°C, thermal degradation of carboxylic acids produces methane and carbon dioxide (Surdam et ai, 1984). As the carboxylic acid anions are consumed due to increasing temperature, the carbonate system becomes internally buffered, and thus the pH may decrease due to increased in the system, leading to carbonate dissolution and the enhancement of secondary porosity (Surdam et ai, 1984). Factors influencing the thermal destruction rate of organic acids include coupled sulphate reduction and hydrocarbon oxidation, and the mineralogy of host sediments (Bell, 1991) the presence of hematite causes rapid rates of acetic acid decomposition. [Pg.6]


See other pages where Hematite sedimentation rate is mentioned: [Pg.341]    [Pg.425]    [Pg.427]    [Pg.443]    [Pg.446]    [Pg.385]    [Pg.3737]    [Pg.4232]    [Pg.436]    [Pg.373]    [Pg.239]   
See also in sourсe #XX -- [ Pg.246 ]




SEARCH



Hematite

© 2024 chempedia.info