Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Harmonic oscillators, quantum dynamics formalism

In the following we show that a simple description of the (quantum or classical) dynamics can be obtained in a multidimensional system close to a stationary point. Thus, the system can be described by a set of uncoupled harmonic oscillators. The formalism is related to the generalization of the harmonic expansion in Eq. (1.7) to multidimensional systems. [Pg.337]

In order to extend the linearization scheme to non-adiabatic dynamics it is convenient to represent the role of the discrete electronic states in terms of operators that simplify the evolution of the quantum subsystem with out changing its effect on the classical bath. A way to do this was first suggested by Miller, McCurdy and Meyer [28,29[ and has more recently been revisited by Thoss and Stock [30, 31[. Their method, known as the mapping formalism, represents the electronic degrees of freedom and the transitions between different states in terms of positions and momenta of a set of fictitious harmonic oscillators. Formally the approach is exact, but approximations (e.g. semi-classical, linearized SC-IVR, etc.) must be made for its numerical implementation. [Pg.558]

In this example the master equation formalism is appliedto the process of vibrational relaxation of a diatomic molecule represented by a quantum harmonic oscillator In a reduced approach we focus on the dynamics of just this oscillator, and in fact only on its energy. The relaxation described on this level is therefore a particular kind of random walk in the space of the energy levels of this oscillator. It should again be emphasized that this description is constructed in a phenomenological way, and should be regarded as a model. In the construction of such models one tries to build in all available information. In the present case the model relies on quantum mechanics in the weak interaction limit that yields the relevant transition matrix elements between harmonic oscillator levels, and on input from statistical mechanics that imposes a certain condition (detailed balance) on the transition rates. [Pg.278]


See other pages where Harmonic oscillators, quantum dynamics formalism is mentioned: [Pg.247]    [Pg.309]    [Pg.365]    [Pg.390]    [Pg.688]   


SEARCH



Harmonic oscillation

Harmonic oscillator

Oscillators quantum dynamics

Quantum dynamical

Quantum dynamics

Quantum harmonic oscillator

Quantum oscillation

Quantum oscillator

© 2024 chempedia.info