Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halolactonizations

Tran orm-based or long-range strategies The retrosynthetic analysis is directed toward the application of powerful synthesis transforms. Functional groups are introduced into the target compound in order to establish the retion of a certain goal transform (e.g., the transform for the Diels-Alder reaction, Robinson annulation, Birch reduction, halolactonization, etc.). [Pg.575]

There is also a category of intramolecular reactions/transforms which involves total mechanistic stereocontrol with conformationally restricted structures, for example the halolactonization transform 149 150 and the internal cycloaddition 151 152. These... [Pg.48]

Erythronolide B, the biosynthetic progenitor of the erythromycin antibiotics, was synthesized for the first time, using as a key step a new method for macrolactone ring closure (double activation) which had been devised specifically for this problem. Retrosynthetic simplification included the clearance of the stereocenters at carbons 10 and 11 and the disconnection of the 9,10-bond, leading to precursors A and B. Cyclic stereocontrol and especially the Baeyer-Villiger and halolactonization transforms played a major role in the retrosynthetic simplification of B which was synthesized starting from 2,4,6-trimethylphenol. [Pg.104]

An internal example of the addition of X and OCOR is called halolactonization. A typical example is ° ... [Pg.1043]

Examples of halolactonization and related halocyclizations can be found in Scheme 4.4. The first entry, which involves NBS as the electrophile, demonstrates the anti stereospecificity of the reaction, as well as the preference for five-membered rings. [Pg.316]

Hydrolysis of the amide, followed by reductive ozonolysis furnished 44 (99.5 0.5 mixture of 44a and 44b), which can be alkenylated to 45 via the aldehyde 44b. Halolactonization could be achieved to the frans-disubstituted lactone 46 via the iodonium ion 51 (Fig. 2), being preferred to 52 because of lesser allylic 1,3-strain [24]. Methylation of 46 gave rise to a 3 1 1 mixture of 47-49, which can be easily separated by chromatography. Deprotection followed by oxidation furnished (-)-roccellaric acid (1) [25], (-)-dihydropro-tolichesterinic acid (4) and the dimethylated acid 50 in pure form. [Pg.51]

The same models as for intermolccular processes are applied for intramolecular diastereoface differentiating double-bond additions. However, there are some advantages in the intramolecular version. Firstly, the entropy factor lowers the barrier of activation and allows reactions to proceed at lower temperatures, which increases the selectivity. Secondly, the cyclic transition states introduce the elements of ring strain and transannular interactions, which lead to enhanced differences between two diastereomorphous geometries. Both of these factors cooperate to increase the selectivity of the intramolecular reaction. For example, halolactonization, by definition, is an intramolecular process. [Pg.134]

The stereocontrolled conversion of (.R)-3-benzyloxymethyl-4-heptadecenoic acid (1) into the halolactone 4 may be interpreted as proceeding via a halonium intermediate 3, which is formed according to the 1,3-allylic strain model 2 and opened via a regio- and stereo-unambiguous SN2 process57. 0 0H... [Pg.135]

If the alkylation products 3 contain appropriately placed double bonds, they can subsequently be subjected to halolactonization with high diastereoselectivity to furnish mixtures of chiral diastereomeric lactones, e.g., 4, along with the chiral auxiliary. [Pg.865]

CH2CI2 at RT to give 84, which is converted into (—)-stemoamide via halolactonization. [Pg.295]

Terashima et al. 231) reported an asymmetric halolactonization reaction. This highly stereoselective reaction permits the synthesis of intermediates for the preparation of chiral a,a-disubstituted a-hydroxycarboxylic acids (227)231c), a-hydroxyketones (228) 231c), functionalized epoxides (229) 231d,e) and natural products 231h,j). Only amino acids have so far been used as a source of the chiral information in the asymmetric halolactonization reaction. Again, the best results have been obtained by using cyclic imino acid enantiomers, namely proline. [Pg.227]

In the total synthesis of an anthracycline antibiotic, the key step was an asymmetric halolactonization reaction. The corresponding bromolactones were formed with high stereoselectivity (d.s. > 90%). (S)-Proline was used as chiral auxiliary. [Pg.228]

Oxetanones can be generally prepared by displacement processes on various /3-substituted carboxylic acids or by halolactonization of /3,y-unsaturated acids. A very general and reliable method consists of treatment of a /8-hydroxy acid with benzenesulfonyl chloride and pyridine at 0°C (equation 91). The yields of /3-lactones are usually in excess of 80% (79JOC356, 74JOC1322). An alternative method involves cyclization of the benzenethiol ester of a /3-hydroxy carboxylic acid by means of mercury(II) methanesulfonate in acetonitrile (equation 92). The yields were excellent in the two cases reported (76JA7874). [Pg.394]

Enol lactones with a halogen at the vinylic position have been synthesized as potential mechanism-based inactivators of serine hydrolyases <81JA5459). 5-Hexynoic acids (181) can be cyclized with mercury(II) ion catalysis to y-methylenebutyrolactones (182) (Scheme 41). Cyclization of the 6-bromo and 6-chloro analogues leads stereospecifically to the (Z)-haloenol lactones (trans addition) but is quite slow. Cyclization of unsubstituted or 6-methyl or 6-trimethylsilyl substituted 5-hexynoic acids is more rapid but alkene isomerization occurs during the reaction. Direct halolactonization of the 5-hexynoic acids with bromine or iodine in a two-phase system with phase transfer catalysis was successful in the preparation of various 5-halomethylene- or 5-haloethylidene-2-phenylbutyrolactones and 6-bromo-and iodo-methylenevalerolactones (Scheme 42). [Pg.673]

Several recent reviews have included specific types of electrophilic cyclofunctionalization reactions.1 Important areas covered in these reviews are halolactonization u cyclofunctionalization of unsaturated hydroxy compounds to form tetrahydrofurans and tetrahydropyrans lb cyclofunctionalization of unsaturated amino compounds lc cyclofunctionalization of unsaturated sulfur and phosphorus compounds ld lf electrophilic heterocyclization of unconjugated dienes 1 synthesis of y-butyrolactones 1 h synthesis of functionalized dihydro- and tetrahydro-furans lj cyclofunctionalization using selenium reagents lk lm stereocontrol in synthesis of acyclic systems 1" stereoselectivity in cyclofunctionalizations lP and cyclofunctionalizations in the synthesis of a-methylenelactones.lq Previous reference works have also addressed this topic.2... [Pg.364]

Cyclizations of (3,7-un saturated acids form -lactones (4-exo cyclization) when the reactions are conducted under conditions of kinetic control.1 - The most common procedure for (3-lactone formation, developed by Barnett, involves halolactonization in a two-phase system using an aqueous solution of the carboxylate salt of the substrate with the halogen (Br2 or I2) added in an organic solvent.18 Cyclization with bis(, ym-collidine)iodine(I) perchlorate provides a higher yield than the Barnett procedure in cases where cyclization is not favored by geminal a-substitution (Table 2, entries 1 and 2).14 Iodo- and bromo-... [Pg.368]

Formation of 3-lactones by 4-endo cyclization has been observed in very few cases. Examples of such halolactonization reactions proceeding by stereospecific anti addition have been discussed in previous reviews. P 2b... [Pg.369]

As mentioned earlier in the discussion of cyclizations leading to (3-lactones, the (3-lactones formed from halolactonization of 1,4-dihydrobenzoic acids readily rearrange to produce bridged ring y-lac-tones.19 In some cases, the substitution pattern favors formation of the y-lactone even under conditions of kinetic control (equation 23).20 Synthesis of a variety of y-lactones by iodolactonization of dihydroben-zoic acid derivatives has been reported recently by Hart (equation 24).91 Attempted iodolactonization of the acid in the case where R = H resulted primarily in an oxidative decarboxylation however, iodolactonization was effected using the amide derivative. [Pg.374]

The asymmetric halolactonization reactions of unsaturated L-proline amides, developed by Terashima and coworkers,184 has been extended to a-alkyl acrylic acid derivatives (equation 75 and Table 21).185 This allows for the synthesis of either enantiomer of an a-methyl-a-hydroxy acid using L-proline as the auxiliary. Less successful approaches to asymmetric induction with a chiral auxiliary include iodolac-... [Pg.391]


See other pages where Halolactonizations is mentioned: [Pg.255]    [Pg.28]    [Pg.86]    [Pg.171]    [Pg.793]    [Pg.1043]    [Pg.1680]    [Pg.159]    [Pg.38]    [Pg.59]    [Pg.95]    [Pg.16]    [Pg.227]    [Pg.1292]    [Pg.58]    [Pg.382]    [Pg.643]   
See also in sourсe #XX -- [ Pg.627 , Pg.628 ]




SEARCH



Halolactone

© 2024 chempedia.info