Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Retrograde transport from Golgi apparatus

COPI vesicles mediate anterograde transport from the intermediate compartment to the Golgi, transport within the Golgi apparatus and retrograde transport back from the Golgi to the ER by the recruitment of soluble... [Pg.393]

Figure 1 The mode of action for bacterial AB-type exotoxins. AB-toxins are enzymes that modify specific substrate molecules in the cytosol of eukaryotic cells. Besides the enzyme domain (A-domain), AB-toxins have a binding/translocation domain (B-domain) that specifically interacts with a cell-surface receptor and facilitates internalization of the toxin into cellular transport vesicles, such as endosomes. In many cases, the B-domain mediates translocation of the A-domain into the cytosol by pore formation in cellular membranes. By following receptor-mediated endocytosis, AB-type toxins exploit normal vesicle traffic pathways into cells. One type of toxin escapes from early acidified endosomes (EE) into the cytosol, thus they are referred to as short-trip-toxins . In contrast, the long-trip-toxins take a retrograde route from early endosomes (EE) through late endosomes (LE), trans-Golgi network (TGN), and Golgi apparatus into the endoplasmic reticulum (ER) from where the A-domains translocate into the cytosol to modify specific substrates. Figure 1 The mode of action for bacterial AB-type exotoxins. AB-toxins are enzymes that modify specific substrate molecules in the cytosol of eukaryotic cells. Besides the enzyme domain (A-domain), AB-toxins have a binding/translocation domain (B-domain) that specifically interacts with a cell-surface receptor and facilitates internalization of the toxin into cellular transport vesicles, such as endosomes. In many cases, the B-domain mediates translocation of the A-domain into the cytosol by pore formation in cellular membranes. By following receptor-mediated endocytosis, AB-type toxins exploit normal vesicle traffic pathways into cells. One type of toxin escapes from early acidified endosomes (EE) into the cytosol, thus they are referred to as short-trip-toxins . In contrast, the long-trip-toxins take a retrograde route from early endosomes (EE) through late endosomes (LE), trans-Golgi network (TGN), and Golgi apparatus into the endoplasmic reticulum (ER) from where the A-domains translocate into the cytosol to modify specific substrates.

See other pages where Retrograde transport from Golgi apparatus is mentioned: [Pg.153]    [Pg.188]    [Pg.342]    [Pg.1956]    [Pg.649]    [Pg.1141]    [Pg.149]    [Pg.489]    [Pg.649]    [Pg.1141]    [Pg.742]    [Pg.255]    [Pg.655]    [Pg.573]    [Pg.442]    [Pg.785]    [Pg.161]   
See also in sourсe #XX -- [ Pg.507 ]




SEARCH



Golgi apparatus

Golgi transport

Retrograde

Retrograde transport

© 2024 chempedia.info