Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourth-order saddle point

Fig. 6.17 Tunnelling and saddle point ionization in Li. (a) Experimental map of the energy levels of Li m = 1 states in a static field. The horizontal peaks arise from ions collected after laser excitation. Energy is measured relative to the one-electron ionization limit. Disappearance of a level with increasing field indicates that the ionization rates exceed 3 x 105 s 1. The dotted line is the classical ionization limit given by Eqs. (6.35) and (6.36). One state has been emphasized by shading, (b) Energy levels for H (n = 18-20, m = 1) according to fourth order perturbation theory. Levels from nearby terms are omitted for clarity. Symbols used to denote the ionization rate are defined in the key. The tick mark indicates the field where the ionization rate equals the spontaneous radiative rate, (c) Experimental map as in (a) except that the collection method is sensitive only to states whose ionization rate exceeds 3 x 105 s-1. At high fields, the levels broaden into the continuum in agreement with tunnelling theory for H (from ref. 32). Fig. 6.17 Tunnelling and saddle point ionization in Li. (a) Experimental map of the energy levels of Li m = 1 states in a static field. The horizontal peaks arise from ions collected after laser excitation. Energy is measured relative to the one-electron ionization limit. Disappearance of a level with increasing field indicates that the ionization rates exceed 3 x 105 s 1. The dotted line is the classical ionization limit given by Eqs. (6.35) and (6.36). One state has been emphasized by shading, (b) Energy levels for H (n = 18-20, m = 1) according to fourth order perturbation theory. Levels from nearby terms are omitted for clarity. Symbols used to denote the ionization rate are defined in the key. The tick mark indicates the field where the ionization rate equals the spontaneous radiative rate, (c) Experimental map as in (a) except that the collection method is sensitive only to states whose ionization rate exceeds 3 x 105 s-1. At high fields, the levels broaden into the continuum in agreement with tunnelling theory for H (from ref. 32).

See other pages where Fourth-order saddle point is mentioned: [Pg.40]    [Pg.40]    [Pg.152]    [Pg.154]    [Pg.35]    [Pg.158]    [Pg.90]    [Pg.239]    [Pg.213]    [Pg.231]   
See also in sourсe #XX -- [ Pg.40 ]




SEARCH



Saddle points

Saddles

© 2024 chempedia.info