Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fouling by Product Wax and Deposition of Carbon

Although the FTS is considered a carbon in-sensitive reaction,30 deactivation of the cobalt active phase by carbon deposition during FTS has been widely postulated.31-38 This mechanism, however, is hard to prove during realistic synthesis conditions due to the presence of heavy hydrocarbon wax product and the potential spillover and buildup of inert carbon on the catalyst support. Also, studies on supported cobalt catalysts have been conducted that suggest deactivation by pore plugging of narrow catalyst pores by the heavy ( 40) wax product.39,40 Very often, regeneration treatments that remove these carbonaceous phases from the catalyst result in reactivation of the catalyst.32 Many of the companies with experience in cobalt-based FTS research report that these catalysts are negatively influenced by carbon (Table 4.1). [Pg.52]

The purpose of this review is to integrate the literature on this topic, along with some of the work we have performed, to provide a clearer understanding on the role of carbon as a deactivation mechanism. The minimization of carbon by promotion, regeneration of catalysts, and some selectivity implications will also be briefly discussed. [Pg.52]

2 FORMATION OF CARBON DEPOSITS ON COBALT CATALYSTS DURING FTS AND IMPLICATIONS FOR ACTIVITY [Pg.52]

Carbonaceous species on metal surfaces can be formed as a result of interaction of metals with carbon monoxide or hydrocarbons. In the FTS, where CO and H2 are converted to various hydrocarbons, it is generally accepted that an elementary step in the reaction is the dissociation of CO to form surface carbidic carbon and oxygen.1 The latter is removed from the surface through the formation of gaseous H20 and C02 (mostly in the case of Fe catalysts). The surface carbon, if it remains in its carbidic form, is an intermediate in the FTS and can be hydrogenated to form hydrocarbons. However, the surface carbidic carbon may also be converted to other less reactive forms of carbon, which may build up over time and influence the activity of the catalyst.15 [Pg.52]

Carbon Deactivation Postulated for Industrial Cobalt Catalysts [Pg.53]


See other pages where Fouling by Product Wax and Deposition of Carbon is mentioned: [Pg.52]   


SEARCH



Carbon product

Carbonate deposits

Carbonates production

Fouling deposits

Fouling, and Deposition

Of waxes

© 2024 chempedia.info