Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fokker-Planck equation fractional rotational diffusion

Chapter 8 by W. T. Coffey, Y. P. Kalmykov, and S. V. Titov, entitled Fractional Rotational Diffusion and Anomalous Dielectric Relaxation in Dipole Systems, provides an introduction to the theory of fractional rotational Brownian motion and microscopic models for dielectric relaxation in disordered systems. The authors indicate how anomalous relaxation has its origins in anomalous diffusion and that a physical explanation of anomalous diffusion may be given via the continuous time random walk model. It is demonstrated how this model may be used to justify the fractional diffusion equation. In particular, the Debye theory of dielectric relaxation of an assembly of polar molecules is reformulated using a fractional noninertial Fokker-Planck equation for the purpose of extending that theory to explain anomalous dielectric relaxation. Thus, the authors show how the Debye rotational diffusion model of dielectric relaxation of polar molecules (which may be described in microscopic fashion as the diffusion limit of a discrete time random walk on the surface of the unit sphere) may be extended via the continuous-time random walk to yield the empirical Cole-Cole, Cole-Davidson, and Havriliak-Negami equations of anomalous dielectric relaxation from a microscopic model based on a... [Pg.586]

In order to demonstrate how the anomalous relaxation behavior described by the hitherto empirical Eqs. (9)—(11) may be obtained from our fractional generalizations of the Fokker-Planck equation in configuration space (in effect, fractional Smoluchowski equations), Eq. (101), we first consider the fractional rotational motion of a fixed axis rotator [1], which for the normal diffusion is the first Debye model (see Section II.C). The orientation of the dipole is specified by the angular coordinate 4> (the azimuth) constituting a system of one rotational degree of freedom. Electrical interactions between the dipoles are ignored. [Pg.316]

This potential has two potential minima on the sites at <(> = 0 and = n as well as two energy barriers located at < ) = jt/2 and <[) = 3n/2. This model has been treated in detail for normal diffusion in Refs. 8,61, and 62. Here we consider the fractional Fokker-Planck equation [Eq. (55)] for a fixed axis rotator with dipole moment p moving in a potential [Eq. (163)]. [Pg.331]

In the present section, it is demonstrated how the linear response of an assembly of noninteracting polar Brownian particles to a small external field F applied parallel and perpendicular to the bias field Fo may be calculated in the context of the fractional noninertial rotational diffusion in the same manner as normal rotational diffusion [8]. In order to carry out the calculation, it is assumed that the rotational Brownian motion of a particle may be described by a fractional noninertial Fokker-Planck (Smoluchowski) equation, in which the inertial effects are neglected. Both exact and approximate solutions of this equation are presented. We shall demonstrate that the characteristic times of the normal diffusion process, namely, the integral and effective relaxation times obtained in Refs. 8, 65, and 67, allow one to evaluate the dielectric response for anomalous diffusion. Moreover, these characteristic times yield a simple analytical equation for the complex dielectric susceptibility tensor describing the anomalous relaxation of the system. The exact solution of the problem reduces to the solution of the infinite hierarchies of differential-recurrence equations for the corresponding relaxation functions. The longitudinal and transverse components of the susceptibility tensor may be calculated exactly from the Laplace transform of these relaxation functions using linear response theory [72]. [Pg.338]

We suppose that a small probing held Fj, having been applied to the assembly of dipoles in the distant past (f = —oo) so that equilibrium conditions have been attained at time t = 0, is switched off at t = 0. Our starting point is the fractional Smoluchowski equation (172) for the evolution of the probability density function W(i), cp, t) for normal diffusion of dipole moment orientations on the unit sphere in configuration space (d and (p are the polar and azimuthal angles of the dipole, respectively), where the Fokker-Planck operator LFP for normal rotational diffusion in Eq. (8) is given by l j p — l j /> T L where... [Pg.349]


See other pages where Fokker-Planck equation fractional rotational diffusion is mentioned: [Pg.587]    [Pg.292]    [Pg.348]    [Pg.745]    [Pg.177]   


SEARCH



Diffuse rotation

Diffusion Fokker-Planck equation

Diffusion equations

Diffusion rotational

Equation fractional diffusion

Fokker Planck equation fractions

Fokker-Planck equation

Fokker-Planck equation equations

Planck

Planck equation

Rotational diffusion equation

Rotational diffusivity

© 2024 chempedia.info