Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flavonoid anthocyanidins

It has been noted that the chemical diversity of plant phenolics is as vast as the plant diversity itself. Most plant phenolics are derived directly from the shikimic acid (simple benzoic acids), shikimate (phenylpropanoid) pathway, or a combination of shikimate and acetate (phenylpropanoid-acetate) pathways. Products of each of these pathways undergo additional structural elaborations that result in a vast array of plant phenolics such as simple benzoic acid and ciimamic acid derivatives, monolig-nols, lignans and lignin, phenylpropenes, coumarins, stilbenes, flavonoids, anthocyanidins, and isollavonoids. [Pg.486]

In contrast to other plant phenolics, the basic carbon skeleton of stilbenes, flavonoids, anthocyanidins, and isoflavonoids... [Pg.487]

The chemical formulae for a variety of plant phenols are given in Fig. 16.2, including examples of simpler phenols, such as cinnamic acid derivative, and of tocopherols, flavonoids, flavonoid glycosides and anthocyanidins. The flavonoids include the following subclasses flavanones (taxifolin), flavones (luteolin), flavonols (quercetin) and flavanols (catechin/epicatechin). The... [Pg.317]

Among the plant phenols, the flavonoids and the anthocyanidins, belonging to the 1,3-diphenylpropans, have been studied in most detail, mainly because of their potential health benefits. With more than 4,000 different flavonoids known, systematic studies of the effects of variation in molecular structure on physico-chemical properties of importance for antioxidative effects have also been possible (Jovanovic et al, 1994 Seeram and Nair, 2002). Flavonoids were originally found not to behave as efficiently as the classic phenolic antioxidants like a-tocopherol and synthetic phenolic antioxidants in donating... [Pg.320]

Fig. 5 Scheme of the flavonoid pathway leading to synthesis of proanthocyanidins. The enzymes involved in the pathway are shown as follows CHS = chalcone synthase CHI = chalcone isomerase F3H = flavanone-3B-hydroxylase DFR = dihydroflavonol-4-reductase LDOX = leucoanthocynidin dioxygenase LAR = leucoanthocyanidin reductase ANR = anthocyanidin reductase adapted from [27] and [28]... [Pg.246]

FIGURE 13.1 Typical structures for main pigment classes zeaxanthin (carotenoid), chlorophyll a (chlorophyll), quercetin (flavonoid), cyanidin (anthocyanidin), betanin (betalain), and alizarin (anthraquinone). [Pg.328]

FIGURE 13.4 Typical structures for main classes of flavonoids naringin chalcone, 4,6,4 -trihydroxyaurone, apigenin (flavone), and pelargonidin (anthocyanidin). [Pg.337]

The chromophores contained in natural dyes are mainly flavonoids, antrachinoids, indigoids and gallotannins. Other molecular types include carotenoids, benzochinons and anthocyanidins. [Pg.22]

Anthocyanins are colored flavonoids that attract animals when a flower is ready for pollination or a fruit is ready to eat. They are glycosides (i.e., the molecule contains a sugar) that range in color from red, pink, and purple to blue depending on the number and placement of substitutes on the B ring (see Fig. 3.7), the presence of acid residues, and the pH of the cell vacuole where they are stored. Without the sugar these molecules are called anthocyanidins. The color of some pigments results from a complex of different anthocyanin and flavone molecules with metal ions. [Pg.96]

Figure 5.4. Abbreviated scheme for biosynthesis of major flavonoid subclasses, showing the primary enzymes and substrates leading to different subclasses. Bold-faced, uppercase abbreviations refer to enzyme names, whereas substrate names are presented in lowercase letters. PAL, phenylalanine ammonia lyase C4H, cinnamate 4-hydroxylase 4CL, 4-coumarate CoA ligase CHS, chalcone synthase CHI, chalcone isomerase CHR, chalcone reductase IPS, isoflavone synthase F3H, flavonone 3-hydroxylase F3 H, flavonoid 3 -hydroxylase F3 5 H, flavonoid 3 5 -hydroxylase FNSI/II, flavone synthase DFR, dihydroflavonol 4-reductase FLS, flavonol synthase ANS, anthocyanidin synthase LAR, leucoanthocyanidin reductase ANR, anthocyanidin reductase UFGT, UDP-glucose flavonoid 3-O-glucosyltransferase. R3 = H or OH. R5 = H or OH. Glc = glucose. Please refer to text for more information. Figure 5.4. Abbreviated scheme for biosynthesis of major flavonoid subclasses, showing the primary enzymes and substrates leading to different subclasses. Bold-faced, uppercase abbreviations refer to enzyme names, whereas substrate names are presented in lowercase letters. PAL, phenylalanine ammonia lyase C4H, cinnamate 4-hydroxylase 4CL, 4-coumarate CoA ligase CHS, chalcone synthase CHI, chalcone isomerase CHR, chalcone reductase IPS, isoflavone synthase F3H, flavonone 3-hydroxylase F3 H, flavonoid 3 -hydroxylase F3 5 H, flavonoid 3 5 -hydroxylase FNSI/II, flavone synthase DFR, dihydroflavonol 4-reductase FLS, flavonol synthase ANS, anthocyanidin synthase LAR, leucoanthocyanidin reductase ANR, anthocyanidin reductase UFGT, UDP-glucose flavonoid 3-O-glucosyltransferase. R3 = H or OH. R5 = H or OH. Glc = glucose. Please refer to text for more information.
Turnbull JJ, Nakajima J, Welford RW, Yamazaki M, Saito K and Schofield CJ. 2004. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis anthocyanidin synthase, flavonol synthase, and flavanone 33-hydroxylase. J Biol Chem 279 1206-1216. [Pg.153]

Flavonoids are a complex group of polyphenolic compounds with a basic C6-C3-C6 structure that can be divided in different groups flavonols, flavones, flavanols (or flavan-3-ols), flavanones, anthocyanidins, and isoflavones. More than 6,000 flavonoids are known the most widespread are flavonols, such as quercetin flavones, such as lu-teolin and flavanols (flavan-3-ols), such as catechin. Anthocyanidins are also bioactive flavonoids they are water-soluble vegetable pigments found especially in berries and other red-blue fruits and vegetables. [Pg.156]

Flavonoids protect LDL from oxidation, delaying the onset of lipid peroxidation, however, the prevention of atherosclerosis by flavonoids occurs not only by the inhibition of LDL oxidation, but also by the increase of cellular resistance to harmful effects of the oxidized LDL (de Luis and Aller, 2008). The antioxidant activity of anthocyanidins, as well as their protective role against LDL oxidation, has been well demonstrated in different in vitro systems (Aviram and Fuhrman, 2002 Satue-Gracia and others 1997 Teissedre and others 1996). [Pg.160]

In Greece, a case-control study was conducted to investigate the incidence of liver cancer by estimating the consumption of six types of flavonoids with a semiquantitative questionnaire on the frequency of foods. The intake of flavones was inversely associated with hepatocellular carcinoma, irrespective of its etiology (viral or nonviral). With respect to cholangiocarcinoma, an inverse association with the consumption of flavan-3-ols, anthocyanidins, and total flavonoids studied was found. However, this last result should be viewed with caution because of the small sample size, due to the fact that this is a rare type of cancer (Lagiou and others 2008). [Pg.165]

CL, 4-coumarate CoA ligase CHS, chalcone synthase CHI, chalcone isomerase F3H, flavanone 3-hydroxylase DFR, dihydroflavonol 4-reductase ANS, anthocyanidin synthase FGT, flavonoid 3-O-glucosyltransferase. [Pg.114]

Flavanone 3 -hydroxylase (F3 H ECl.14.13.21 CYP75B) activity was initially identified in microsomal preparations of golden weed (Haplopappus gracilis) [110]. E3 H from irradiated parsley cell cultures was later biochemically analyzed and characterized as a cytochrome P450 having an absolute requirement for NADPH and molecular oxygen as cofactors [111]. The enzyme has been shown to have activity with flavanones, flavones, dihydroflavonols, and flavonols, but does not appear to have activity with anthocyanidins [111]. The first cDNA clone for E3 H was isolated from Petunia [112]. It has been suggested that E3 H may serve as an anchor for the proposed flavonoid multi-enzyme complex on the cytosolic surface of the endoplasmic reticulum [44]. [Pg.79]

Ford CM, Boss PK, Hoj PB (1998) Cloning and characterization of Vitis vinifera UDP-glucose flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. 1 Biol Chem 273 9224-9233... [Pg.94]


See other pages where Flavonoid anthocyanidins is mentioned: [Pg.651]    [Pg.651]    [Pg.487]    [Pg.722]    [Pg.1621]    [Pg.651]    [Pg.651]    [Pg.487]    [Pg.722]    [Pg.1621]    [Pg.49]    [Pg.164]    [Pg.35]    [Pg.317]    [Pg.320]    [Pg.334]    [Pg.338]    [Pg.165]    [Pg.480]    [Pg.327]    [Pg.53]    [Pg.89]    [Pg.133]    [Pg.137]    [Pg.146]    [Pg.147]    [Pg.149]    [Pg.165]    [Pg.167]    [Pg.281]    [Pg.136]    [Pg.239]    [Pg.549]    [Pg.338]   
See also in sourсe #XX -- [ Pg.70 ]




SEARCH



Anthocyanidin

Anthocyanidins

© 2024 chempedia.info