Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fields and Molecular Orbitals

Force Field and Molecular Orbital Calculations in Organosulfiir Chemistry... [Pg.256]

The considerable number of molecular orbital calculations which have recently been made for sandwich compounds are however considered in some detail in Section 6. This has been done in order to make clear the relationship between the ligand field and molecular orbital approaches, and also to indicate the need for the use of a more sophisticated molecular orbital scheme than that adopted in this Introduction, i.e. one in which the a-framework of the rings is specifically included in the basis set as well as the rr-type orbitals. [Pg.50]

Complexes containing anions of the above formulation have attracted a large number of studies because of their alleged simplicity. This is illustrated by the central position such complexes have played in the evolution of crystal field, ligand field and molecular orbital models of bonding in transition metal complexes. [Pg.889]

Fig. 4. Comparison of crystal field and molecular orbital methods for the octahedral environment. Fig. 4. Comparison of crystal field and molecular orbital methods for the octahedral environment.
Crystal field theory was developed, in part, to explain the colors of transition-metal complexes. It was not completely successful, however. Its failure to predict trends in the optical absorption of a series of related compounds stimulated the development of ligand field and molecular orbital theories and their application in coordination chemistry. The colors of coordination complexes are due to the excitation of the d electrons from filled to empty d orbitals d-d transitions). In octahedral complexes, the electrons are excited from occupied t2g levels to empty Cg levels. The crystal field splitting Ao is measured directly from the optical absorption spectrum of the complex. The wavelength of the strongest absorption is called Amax and it is related to Ao as follows. E = hv, so Ao = hv = Because en-... [Pg.346]

Ligand Field and Molecular Orbital Theories of Transition Metal X-ray Absorption Edge Transitions... [Pg.155]

The valence bond theory was developed by Professor Linus Pauling, of the California Institute of Technology, and made available in his excellent book. The Nature of the Chemical Bond, published in 1940, 1948, and 1960. Along with the late Marie Curie, Professor Pauling is one of the very few persons to have been awarded two Nobel prizes, the Nobel prize in chemistry in 1954 and the Nobel peace prize in 1962. Pauling s ideas have had an important impact on all areas of chemistry his valence bond theory has aided coordination chemists and has been extensively used. It can account reasonably well for the structure and magnetic properties of metal complexes. Extensions of the theory will account for other properties of coordination compounds such as absorption spectra, but other theories seem to do this more simply. Therefore, in recent years coordination chemists have favored the crystal field, ligand field, and molecular orbital theories. [Pg.25]

It is useflil to show the valence bond representations of the complexes [CoFe] and [Co(NH3)6], which can then be compared with representations from the crystal field and molecular orbital theories to be discussed later. First, we must know from experiment that [CoF ] contains four unpaired electrons, whereas [Co(NH3)g] has all of its electrons paired. Each of the ligands, as Lewis bases, contributes a pair of electrons to form a coordinate covalent bond. The valence bond theory designations of the electronic structures are shown in Figure 2.7. The bonding is described as being covalent. Appropriate combinations of metal atomic orbitals are blended together to give a new set of orbitals, called hybrid orbitals. [Pg.25]


See other pages where Fields and Molecular Orbitals is mentioned: [Pg.617]    [Pg.617]    [Pg.618]    [Pg.620]    [Pg.622]    [Pg.624]    [Pg.626]    [Pg.628]    [Pg.630]    [Pg.632]    [Pg.634]    [Pg.636]    [Pg.638]    [Pg.640]    [Pg.641]    [Pg.642]    [Pg.15]    [Pg.112]    [Pg.23]    [Pg.133]    [Pg.38]    [Pg.56]    [Pg.26]    [Pg.420]    [Pg.1928]    [Pg.206]   


SEARCH



Field, Valence-Bond, and Molecular Orbital Theories

Molecular Orbital and Ligand Field Theories

Molecular orbital fields

© 2024 chempedia.info