Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

EXPANSION MOULDING

A multi-layer expansion-moulded article is obtained by moulding a multi-layer parison comprising a foamed resin... [Pg.50]

The allowable dimensional variation (the tolerance) of a polymer part can be larger than one made of metal - and specifying moulds with needlessly high tolerance raises costs greatly. This latitude is possible because of the low modulus the resilience of the components allows elastic deflections to accommodate misfitting parts. And the thermal expansion of polymers is almost ten times greater than metals there is no point in specifying dimensions to a tolerance which exceeds the thermal strains. [Pg.310]

Glass-reinforced grades of SAN exhibit a modulus several times that of the unfilled polymer and, as with other glass-filled polymers, a reduced coefficient of thermal expansion and lower moulding shrinkage. The materials are thus of interest on account of their high stiffness and dimensional stability. [Pg.441]

One alternative approach to the two-stage steam moulding process is that in which impregnated beads are fed directly to an injection moulding machine or extruder so that expansion and consolidation occur simultaneously. This approach has been used to produce expanded polystyrene sheet and paper by a tubular process reminiscent of that used with polyethylene. Bubble nucleating... [Pg.458]

In the low-pressure systems a shot of material is injected into the mould which, if it did not expand, would give a short shot. However, the expanding gas causes the polymer to fill the mould cavity. One important form of the low-pressure process is the Union Carbide process in which the polymer is fed to and melted in an extruder. It is blended with nitrogen which is fed directly into the extruder. The extruder then feeds the polymer melt into an accumulator which holds it under pressure (14-35 MPa) to prevent premature expansion until a predetermined shot builds up. When this has been obtained a valve opens and the accumulator plunger rams the melt into the mould. At this point the mould is only partially filled but the pressurised gas within the melt allows it to expand. [Pg.460]

One such process is the TAP process, the basic patent being held by Dow. It was developed in Japan by Asahi in conjuction with Toshiba. Foam expansion after mould filling is made possible by use of retractable mould cores. Because of the difficulty of allowing expansion in more than one direction this process has been largely limited to the production of flat products. Efficient gas sealing systems are also vital and the process needs close control. For this reason it has not been widely used in either Europe or North America. [Pg.460]

A counter-pressure process was also used by Buhler-Miag, details of which were only disclosed to licensees. It has been stated that expansion does not involve mould movement or egression back through the sprue but that the key to success is in the venting. This suggests that egress of melt through mould vents... [Pg.460]

One particular feature of PPO is its exceptional dimensional stability amongst the so-called engineering plastics. It has a low coefficient of thermal expansion, low moulding shrinkage and low water absorption, thus enabling moulding to close tolerances. [Pg.589]

The reinforced reaction injection moulding (RRIM) process is a development of RIM in which reinforcing fillers such as glass fibres are incorporated into the polymer. One advantage of such a system is to reduce the coefficient of thermal expansion, and with a 40-50% glass fibre content the coefficient is brought into line with those of metals. [Pg.804]

Type 5 Type D-5 Very low thermal expansion good dimensional stability Scientific instruments, glass moulds... [Pg.611]

Pipework and other components should be insulated after the safety pressure test, but usually before prolonged running of the plant, since it is very difficult to remove water and frost once it has formed. Only the low-pressure piping is insulated, where it does not form part of the evaporator, i.e. after the expansion valve, where this may be outside the cooled space, and from the evaporator back to the compressor. Basic materials are cork and the expanded plastics. These are sufficiently rigid to be moulded to the correct shape, remain firmly in place, and support the external vapour barrier which is essential to prevent the ingress of water vapour (see also Chapter 15). [Pg.140]

Tearing or distortion of a moulded rubber product at the line of separation of the two mould halves (the spew line) due to the sudden release, on opening the mould, of the high pressures developed by the thermal expansion of the heated rubber other names are suck back, flash back and retracted spew. [Pg.12]

Change in dimensions of an unvulcanised rubber (calendered sheet or extruded section) on cooling from the processing temperature. Also the volume contraction of a moulded rubber product on cooling from vulcanising temperature. See Coefficient of Thermal Expansion (Volumej. Shrinking... [Pg.57]

Some races of men seem moulded in wax, soft and melting, at once plastic and feeble. Some races, like some metals, combine the greatest flexibility with the greatest strength. But the Indian is hewn out of rock. . . Races of inferior energy have possessed a powerful expansion and assimilation to which he is a stranger and it is this fixed... [Pg.238]

Inserts can be incorporated into the mould before injection or placed after demoulding into a moulded hole. For neat resins, the first solution is generally avoided because of the big difference between the coefficients of thermal expansion of metals and plastics. In both cases, inserts and embossing must obey some general rules. Among these, some, but not all, are recalled below ... [Pg.720]

Under pressure in a closed mould during gelation. After cooling and demoulding, the expanded parts are re-heated (post-expansion) to obtain closed-cell foams such as life jackets. [Pg.742]

Mould shrinkage and coefficient of thermal expansion also vary by several percent and can lead to warpage. [Pg.821]

Olefins or alkenes are defined as unsaturated aliphatic hydrocarbons. Ethylene and propylene are the main monomers for polyolefin foams, but dienes such as polyisoprene should also be included. The copolymers of ethylene and propylene (PP) will be included, but not polyvinyl chloride (PVC), which is usually treated as a separate polymer class. The majority of these foams have densities <100 kg m, and their microstructure consists of closed, polygonal cells with thin faces (Figure la). The review will not consider structural foam injection mouldings of PP, which have solid skins and cores of density in the range 400 to 700 kg m, and have distinct production methods and properties (456). The microstructure of these foams consists of isolated gas bubbles, often elongated by the flow of thermoplastic. However, elastomeric and microcellular foams of relative density in the range 0.3 to 0.5, which also have isolated spherical bubbles (Figure lb), will be included. The relative density of a foam is defined as the foam density divided by the polymer density. It is the inverse of the expansion ratio . [Pg.3]

DNPT)) were studied using a gas evolution apparatus. The decomposition temperature of ADC decreased with both DNPT and 4,4-oxybis(benzenesulphonyl hydrazide) (OBSH) blending and this affected the structure and properties of the resulting foams. Using a tube mould for an extrudate to vulcanise the NR/EPDM extradate in a hot air oven was found to control the expansion and foam dimensions. The NR compositions affected the foam structure and properties. 16 refs. [Pg.30]


See other pages where EXPANSION MOULDING is mentioned: [Pg.50]    [Pg.109]    [Pg.116]    [Pg.50]    [Pg.109]    [Pg.116]    [Pg.271]    [Pg.354]    [Pg.457]    [Pg.458]    [Pg.544]    [Pg.567]    [Pg.667]    [Pg.710]    [Pg.711]    [Pg.737]    [Pg.303]    [Pg.122]    [Pg.9]    [Pg.18]    [Pg.41]    [Pg.18]    [Pg.163]    [Pg.348]    [Pg.452]    [Pg.452]    [Pg.604]    [Pg.740]    [Pg.758]    [Pg.759]    [Pg.10]    [Pg.30]    [Pg.35]    [Pg.46]   
See also in sourсe #XX -- [ Pg.102 ]




SEARCH



© 2024 chempedia.info