Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers secondary cleavage

As indicated in Scheme VII/32, cyclononanone (VII/165) is transformed into hydroperoxide hemiacetal, VII/167, which is isolated as a mixture of stereoisomers. The addition of Fe(II)S04 to a solution of VII/167 in methanol saturated with Cu(OAc)2 gave ( )-recifeiolide (VII/171) in quantitative yield. No isomeric olefins were detected. In the first step of the proposed mechanism, an electron from Fe2+ is transferred to the peroxide to form the oxy radical VII/168. The central C,C-bond is weakened by antiperiplanar overlap with the lone pair on the ether oxygen. Cleavage of this bond leads to the secondary carbon radical VII/169, which yields, by an oxidative coupling with Cu(OAc)2, the alkyl copper intermediate VII/170. If we assume that the alkyl copper intermediate, VII/170, exists (a) as a (Z)-ester, stabilized by n (ether O) —> <7 (C=0) overlap (anomeric effect), and (b) is internally coordinated by the ester to form a pseudo-six-membered ring, then only one of the four -hydrogens is available for a syn-//-elimination. [111]. This reaction principle has been used in other macrolide syntheses, too [112] [113]. [Pg.155]

Copper chromite (CuCr204) has historically been widely used as a hydrogenation catalyst. Generally because of its low catalytic activity its chemoselectivity is useful, although it does require high temperature and autoclave pressure conditions. It is effective for cleavage of benzylic alcohols, primary and secondary benzylic esters and ethers. Efficient cleavage of benzylamines has also been utilized (equation 29). Other copper salts and copper alloys have found infrequent use. [Pg.963]

Primary TBDMS ethers can be cleaved selectively in the presence of THP ethers and ketals using ceric ammonium nitrate in methanol. Both phenolic and aliphatic TBDMS ethers undergo cleavage when exposed to catalytic amounts of PdCl2(MeCN)2 in the latter case, and with longer exposure, this also results in oxidation to the corresponding aldehyde or ketone, if the alcohol was primary or secondary, respectively. This cleavage and oxidation can be performed selectively in the presence of TIPS, TBDPS and benzyl ethers (equation 15). [Pg.1674]

The hydrogenolyaia of cyclopropane rings (C—C bond cleavage) has been described on p, 105. In syntheses of complex molecules reductive cleavage of alcohols, epoxides, and enol ethers of 5-keto esters are the most important examples, and some selectivity rules will be given. Primary alcohols are converted into tosylates much faster than secondary alcohols. The tosylate group is substituted by hydrogen upon treatment with LiAlH (W. Zorbach, 1961). Epoxides are also easily opened by LiAlH. The hydride ion attacks the less hindered carbon atom of the epoxide (H.B. Henhest, 1956). The reduction of sterically hindered enol ethers of 9-keto esters with lithium in ammonia leads to the a,/S-unsaturated ester and subsequently to the saturated ester in reasonable yields (R.M. Coates, 1970). Tributyltin hydride reduces halides to hydrocarbons stereoselectively in a free-radical chain reaction (L.W. Menapace, 1964) and reacts only slowly with C 0 and C—C double bonds (W.T. Brady, 1970 H.G. Kuivila, 1968). [Pg.114]

Picolyl ethers are prepared from their chlorides by a Williamson ether synthesis (68-83% yield). Some selectivity for primary versus secondary alcohols can be achieved (ratios = 4.3-4.6 1). They are cleaved electrolytically ( — 1.4 V, 0.5 M HBF4, MeOH, 70% yield). Since picolyl chlorides are unstable as the free base, they must be generated from the hydrochloride prior to use. These derivatives are relatively stable to acid (CF3CO2H, HF/anisole). Cleavage can also be effected by hydrogenolysis in acetic acid. ... [Pg.58]

Selective cleavage of one secondary TBDMS ether in the presence of a somewhat more hindered one was achieved with Bu4N F in THF. ... [Pg.81]

Bu2BOTf, BH3-THF, CH2CI2, 0°, 70-91% yield. In a variety of pyrano-sides, cleavage occurs primarily to give the primary alcohol, with the secondary alcohol protected as the benzyl ether." ... [Pg.221]

Acidic ether cleavages are typical nucleophilic substitution reactions, either SN1 or Sn2 depending on the structure of the substrate. Ethers with only primary and secondary alkyl groups react by an S 2 mechanism, in which or Br attacks the protonated ether at the less hindered site. This usually results in a selective cleavage into a single alcohol and a single alkyl halide. For example, ethyl isopropyl ether yields exclusively isopropyl alcohol and iodoethane on cleavage by HI because nucleophilic attack by iodide ion occurs at the less hindered primary site rather than at the more hindered secondary site. [Pg.658]

The completion of the synthesis of key intermediate 2 requires only a straightforward sequence of functional group manipulations. In the presence of acetone, cupric sulfate, and camphorsulfonic acid (CSA), the lactol and secondary hydroxyl groups in 10 are simultaneously protected as an acetonide (see intermediate 9). The overall yield of 9 is 55 % from 13. Cleavage of the benzyl ether in 9 with lithium metal in liquid ammonia furnishes a diol (98% yield) which is subsequently converted to selenide 20 according to Grie-co s procedure22 (see Scheme 6a). Oxidation of the selenium atom... [Pg.326]

The use of iodotrimethylsilane for this purpose provides an effective alternative to known methods. Thus the reaction of primary and secondary methyl ethers with iodotrimethylsilane in chloroform or acetonitrile at 25—60° for 2—64 hours affords the corresponding trimethylsilyl ethers in high yield. The alcohols may be liberated from the trimethylsilyl ethers by methanolysis. The mechanism of the ether cleavage is presumed to involve initial formation of a trimethylsilyl oxonium ion which is converted to the silyl ether by nucleophilic attack of iodide at the methyl group. tert-Butyl, trityl, and benzyl ethers of primary and secondary alcohols are rapidly converted to trimethylsilyl ethers by the action of iodotrimethylsilane, probably via heterolysis of silyl oxonium ion intermediates. The cleavage of aryl methyl ethers to aryl trimethylsilyl ethers may also be effected more slowly by reaction with iodotrimethylsilane at 25—50° in chloroform or sulfolane for 12-125 hours, with iodotrimethylsilane at 100—110° in the absence of solvent, " and with iodotrimethylsilane generated in situ from iodine and trimcthylphenylsilane at 100°. ... [Pg.157]

The mass spectra of TMS ethers are characterized by weak or absent molecular ions the [M-15] ion formed by cleavage of a methyl to silicon bond is generally more abundant. This ion can be used to determine the molecular weight provided that it is not mistaken for the molecular ion itself. Dissociation of the molecular ion often results in prominent secondary fragment ions containing the ionized dimethylsiloxy group attached to a hydrocarbon portion of the molecule. In common with alkyl ethers,... [Pg.433]

Chiral acetals/ketals derived from either (R,R)- or (5,5 )-pentanediol have been shown to offer considerable advantages in the synthesis of secondary alcohols with high enantiomeric purity. The reaction of these acetals with a wide variety of carbon nucleophiles in the presence of a Lewis acid results in a highly diastereoselective cleavage of the acetal C-0 bond to give a /1-hydroxy ether, and the desired alcohols can then be obtained by subsequent degradation through simple oxidation elimination. Scheme 2-39 is an example in which H is used as a nucleophile.97... [Pg.105]


See other pages where Ethers secondary cleavage is mentioned: [Pg.764]    [Pg.1674]    [Pg.232]    [Pg.108]    [Pg.214]    [Pg.257]    [Pg.128]    [Pg.159]    [Pg.139]    [Pg.329]    [Pg.207]    [Pg.61]    [Pg.658]    [Pg.674]    [Pg.674]    [Pg.431]    [Pg.436]    [Pg.481]    [Pg.506]    [Pg.550]    [Pg.551]    [Pg.616]    [Pg.664]    [Pg.754]    [Pg.759]    [Pg.768]    [Pg.775]    [Pg.777]    [Pg.777]    [Pg.778]    [Pg.778]    [Pg.62]    [Pg.242]    [Pg.7]    [Pg.240]    [Pg.289]    [Pg.788]    [Pg.168]   
See also in sourсe #XX -- [ Pg.350 ]




SEARCH



Ethers cleavage

© 2024 chempedia.info