Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Endocytic recycling pathway mechanisms

Figure 11.1 Schematic representation of iron uptake mechanisms, (a) The transferrin-mediated pathway in animals involves receptor-mediated endocytosis of diferric transferrin (Tf), release of iron at the lower pH of the endocytic vesicle and recycling of apoTf. (b) The mechanism in H. influenzae involves extraction of iron from Tf at outer membrane receptors and transport to the inner membrane permease system by a periplasmic ferric binding protein (Fbp). From Baker, 1997. Reproduced by permission of Nature Publishing Group. Figure 11.1 Schematic representation of iron uptake mechanisms, (a) The transferrin-mediated pathway in animals involves receptor-mediated endocytosis of diferric transferrin (Tf), release of iron at the lower pH of the endocytic vesicle and recycling of apoTf. (b) The mechanism in H. influenzae involves extraction of iron from Tf at outer membrane receptors and transport to the inner membrane permease system by a periplasmic ferric binding protein (Fbp). From Baker, 1997. Reproduced by permission of Nature Publishing Group.
Fig. 5 Synaptic vesicle recycling in the synapse. For synaptic vesicle recycling, several endocytic mechanisms appear to co-exist in synaptic nerve terminals. In the case of fast kiss-and-ran exo-cytosis/endocytosis, the fused vesicle does not collapse into the membrane but is retrieved directly by a fast process. The molecular machinery underlying this pathway is unknown. Vesicles that have fully collapsed into the membrane are recycled by clathrin-mediated endocytosis. Clathrin, along with other proteins, is involved in membrane invagination (see figure and text) and leads finally to the formation of a constricted pit. The GTPase dynamin (black ring) mediates membrane scission of the constricted pit. After removal of the clathrin coat, two pathways are possible (direct recycling and recycling via the early endosome). In all cases, before fusion the recycled vesicles have to be loaded with neurotransmitters (NT). Fig. 5 Synaptic vesicle recycling in the synapse. For synaptic vesicle recycling, several endocytic mechanisms appear to co-exist in synaptic nerve terminals. In the case of fast kiss-and-ran exo-cytosis/endocytosis, the fused vesicle does not collapse into the membrane but is retrieved directly by a fast process. The molecular machinery underlying this pathway is unknown. Vesicles that have fully collapsed into the membrane are recycled by clathrin-mediated endocytosis. Clathrin, along with other proteins, is involved in membrane invagination (see figure and text) and leads finally to the formation of a constricted pit. The GTPase dynamin (black ring) mediates membrane scission of the constricted pit. After removal of the clathrin coat, two pathways are possible (direct recycling and recycling via the early endosome). In all cases, before fusion the recycled vesicles have to be loaded with neurotransmitters (NT).

See other pages where Endocytic recycling pathway mechanisms is mentioned: [Pg.147]    [Pg.83]    [Pg.477]    [Pg.568]    [Pg.532]    [Pg.140]    [Pg.110]    [Pg.169]    [Pg.568]    [Pg.63]    [Pg.66]    [Pg.703]    [Pg.480]    [Pg.1671]   
See also in sourсe #XX -- [ Pg.209 , Pg.210 , Pg.211 ]




SEARCH



Recycling mechanisms

© 2024 chempedia.info