Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective substituted malonic acid

Decarboxylation of malonic acid derivatives is a well studied process in the biosynthesis of biomolecules such as long-chain fatty acids and polyketides. A decarboxylase that exhibits enantioselectivity for substituted malonates would be useful for producing ophcally active carboxylic acids, hi fact, malonyl-CoA decarboxylase does catalyze an enantioselective decarboxylation (Figure 3.2) [5], but malonyl-CoA is an unsuitable precursor for optically active substances. Instead, we focused on the prochiral-activated compoimd arylmalonate, an intermediate of malonic ester synthesis, to develop a method for enantioselective decarboxylation. Malonates are stable at room temperature but readily decompose to arylacetate and CO2 at high temperatures. This suggests that the decarboxylation of arylmalonate may occur naturally if arylmalonate acts as a substrate for a decarboxylase. [Pg.59]

By substituting (S)-(-)-l-amino-2-(dimethylmethoxymethyl)pyrrolidine (S)-(83) for (S)-(4), Enders has developed an efficient and enantioselective Hantzsch synthesis (Scheme 4). In this synthesis, the more-hindered hydrazone formed from (83) was condensed with an acetoacetic acid ester. Deprotonation of the hydrazone so-formed (the major tautomer present was an enehydrazine) followed by addition of an arylidene malonate derivative yielded (85), which could be closed with mild acid to yield optically active... [Pg.520]

Malonate and related activated methylene compounds have also been used as the nucleophile in conjugate addition/Michael reactions. Taylor and co-workers have developed a new methodology that utilizes (salen)aluminum complexes such as 43 as a catalyst to effect the enantioselective conjugate addition to a,p-unsaturated ketones by a variety of nucleophiles.25 For example, nitriles, nitroalkanes, hydrazoic acids, and azides have found utility in this reaction. Additionally, cyanoacetate (42) has been demonstrated to undergo a highly enantioselective conjugate addition to 41. The Krapcho decarboxylation is then necessary to produce cyanoketone 44, an intermediate in the synthesis of enantioenriched 2,4-cw-di substituted piperidine 45. [Pg.641]

Bis(phenylsulfonyl)methane has also been employed as an acidic carbon pronucleophile related to malonates and 1,3-diketones with success in the Michael reaction with ot,p-unsaturated aldehydes using 31c as catalyst (Scheme 3.6). The reaction showed a remarkable substrate scope when alkyl-substituted enals were employed but failed when cinnamaldehyde was tested as Michael acceptor. Alternatively, a more acidic cyclic gem-bissulfone has been used as Michael donor, keeping the high yields and enantioselectivities observed for the reaction and also allowing to expand the scope of the reaction to several aromatic enals.In all cases, the chemistry of the sulfonyl group was employed to generate a methyl group after metal-mediated desulfuration or, alternatively. [Pg.71]

The molybdenum and tungsten complexes catalyze reactions of soft nucleophiles, such as malonates, related 1,3-dicarbonyl compoimds, and nitroalkanes. Azlactones are also soft carbanions, and Trost has shown that complexes formed from molybdenum and the bis(pyridine) ligands catalyze enantioselective and diastereoselective allylation of azlactones with allylic phosphates to form quaternary amino acids (Equation 20.40). In these reactions, the nucleophile adds to the more substituted position of the allylic electrophile, and a stereocenter is formed at both the allyl carbon and the azlactone carbon. One route to the protease inhibitor tipranavir by the molybdenum-catalyzed allylation with 1,3-dicarbonyl compounds was demonstrated by Trost (Equation 20.41), and the Merck process group used related allylation chemistry with Trost s bis(pyridine) ligand to prepare the cyclopentanone precursor to various analogs of tipranavir (Equation 20.42). [Pg.990]


See other pages where Enantioselective substituted malonic acid is mentioned: [Pg.115]    [Pg.332]    [Pg.280]    [Pg.1231]    [Pg.199]    [Pg.39]    [Pg.262]    [Pg.723]    [Pg.262]    [Pg.723]    [Pg.115]    [Pg.107]    [Pg.536]    [Pg.544]    [Pg.74]    [Pg.251]    [Pg.593]    [Pg.105]    [Pg.105]    [Pg.68]    [Pg.120]    [Pg.127]    [Pg.101]    [Pg.103]    [Pg.344]    [Pg.390]    [Pg.275]    [Pg.98]    [Pg.41]    [Pg.352]    [Pg.48]    [Pg.62]    [Pg.263]    [Pg.62]    [Pg.263]    [Pg.16]   
See also in sourсe #XX -- [ Pg.184 ]




SEARCH



Enantioselective Substitutions

Enantioselectivity substitution

Malonates, acidity

Malonic acid

Malonic acid / Malonate

Malonic acid acidity

Malonic acid acids

© 2024 chempedia.info