Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electroreduction cobalt salt

Recently, it was shown that the electroreduction of catalytic simple cobalt salts in the presence of functionalized organic halides leads to an organometallic compound [19] that can react with different substrates in DMF or acetonitrile containing pyridine as ligand (Scheme 15.6). [Pg.635]

The first catalysts reported for the electroreduction of C02 were metallophthalocyanines (M-Pc).126 In aqueous solutions of tetraalkylammonium salts, current-potential curves at a cobalt phthalocyanine (Co-Pc)-coated graphite electrode showed a reduction current peak whose height was proportional to the C02 concentration and to the square root of the potential sweep rate at a given C02 concentration. On electrolysis, oxalic acid and glycolic acid were detected, but formic acid was not. Mn and Pd phthalocyanines were inactive, while Cu and Fe phthalocyanines were slightly active. At the potentials used for C02 reduction, M-Pc catalysts would be in their dinegative state, and the occupied dz2 orbital of the metal ion in the metallophthalocyanine was suggested to play an important role in the catalytic activity. [Pg.368]

Organic electroreductive coupling reactions using transition-metal complexes as catalysts have been widely investigated. Reviews on the subject have been published [89, 90]. The method involving the most common transition-metal complexes (nickel, cobalt, palladium) appears to be a useful tool to synthetize heterocycles from organic halides via radical intermediates. Nickel catalyst precursors are nickel(II) salts that are cathodically reduced either to nickel(I) or to nickel(O) and cobalt catalyst... [Pg.361]

Cobalt catalyst precursors are cobalt(III) or cobalt(II) salts ligated to nitrogen and eventually oxygen-containing polydentate molecules like B12, salen, C2(DO)(DOH)p . The III/II electroreduction occurs at around OV vs SCE. Further reduction at ca. — 1 V vs SCE corresponds to the formation of cobalt(I) complexes which are the reactive species involved in the reactions mentioned below. [Pg.144]

Electroreduction of the cobalt(II) salt in a mixture of either dimethylform-amide-pyridine or acetonitrile-pyridine as solvent, often in the presence of bipyridine, produces a catalytically active cobalt(I) complex which is believed to be cobalt(I) bromide with attached bipyridine ligands (or pyridine moieties in the absence of bipyridine). As quickly as it is electrogenerated, the active catalyst reduces an aryl halide, after which the resulting aryl radical can undergo coupling with an acrylate ester [141], a different aryl halide (to form a biaryl compound) [142], an activated olefin [143], an allylic carbonate [144], an allylic acetate [144, 145], or a... [Pg.551]

Second, the electroreduction of Co2+ (at —0.86 V/SCE) which is initially irreversible becomes reversible in the presence of zinc salts. Under these conditions, the electrogenerated Co+ species has a life-time estimated at several seconds. Consequently, it is more stable towards the disproportionation reaction than the cobalt species generated in the presence of pyridine used as ligand. [Pg.784]


See other pages where Electroreduction cobalt salt is mentioned: [Pg.442]    [Pg.449]    [Pg.21]   
See also in sourсe #XX -- [ Pg.633 ]




SEARCH



Cobalt salts

Cobaltous salts

Electroreduction

Electroreductions

© 2024 chempedia.info