Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic excitation intersystem crossing

The natural processes of intersystem crossing and internal conversion will quickly (e.g. 50 ns) carry the molecule from this excited electronic surface to the ground electronic surface without a collision,... [Pg.2998]

Energy level diagram for a molecule showing pathways for deactivation of an excited state vr Is vibrational relaxation Ic Is Internal conversion ec Is external conversion, and Isc Is Intersystem crossing. The lowest vibrational energy level for each electronic state Is Indicated by the thicker line. [Pg.425]

Figure 7. Potential energy diagram of CH2O. After excitation to specific rovibrational levels of Si, internal conversion leads to highly excited molecules in the ground electronic state So, whereas intersystem crossing populates the lowest triplet state Ti. Figure 7. Potential energy diagram of CH2O. After excitation to specific rovibrational levels of Si, internal conversion leads to highly excited molecules in the ground electronic state So, whereas intersystem crossing populates the lowest triplet state Ti.
Section V.D described the competition of two pathways in the H2 + CO molecular channel. There are also multiple pathways to the radical channel producing H + HCO. In aU cases, highly vibrationally excited CH2O is prepared by laser excitation via the So transition. In the case of the radical channel discussed in this section, multiple pathways arise because of a competition between internal conversion (S o) and intersystem crossing ( i T ), followed by evolution on these electronic states to the ground-state H + HCO product channel. Both electronic states So and Ti correlate adiabatically with H + HCO products, as shown in Fig. 7. [Pg.254]

The interconversion between different spin states is closely related to the intersystem crossing process in excited states of transition-metal complexes. Hence, much of the interest in the rates of spin-state transitions arises from their relevance to a better understanding of intersystem crossing phenomena. The spin-state change can alternatively be described as an intramolecular electron transfer reaction [34], Therefore, rates of spin-state transitions may be employed to assess the effect of spin multiplicity changes on electron transfer rates. These aspects have been covered in some detail elsewhere [30]. [Pg.59]

Interestingly, it was possible to probe the spin-forbidden component of the tunneling reaction with internal and external heavy atom effects. Such effects are well known to enhance the rates of intersystem crossing of electronically excited triplets to ground singlet states, where the presence of heavier nuclei increases spin-orbit coupling. Relative rates for the low-temperature rearrangements of 12 to 13 were... [Pg.428]

Anthraquinones are nearly perfect sensitizers for the one-electron oxidation of DNA. They absorb light in the near-UV spectral region (350 nm) where DNA is essentially transparent. This permits excitation of the quinone without the simultaneous absorption of light by DNA, which would confuse chemical and mechanistic analyses. Absorption of a photon by an anthraquinone molecule initially generates a singlet excited state however, intersystem crossing is rapid and a triplet state of the anthraquinone is normally formed within a few picoseconds of excitation, see Fig. 1 [11]. Application of the Weller equation indicates that both the singlet and the triplet excited states of anthraquinones are capable of the exothermic one-electron oxidation of any of the four DNA bases to form the anthraquinone radical anion (AQ ) and a base radical cation (B+ ). [Pg.151]

Fig. 1 Schematic mechanism for the long-distance oxidation of DNA. Irradiation of the anthraquinone (AQ) and intersystem crossing (ISC) forms the triplet excited state (AQ 3), which is the species that accepts an electron from a DNA base (B) and leads to products. Electron transfer to the singlet excited state of the anthraquinone (AQ 1) leads only to back electron transfer. The anthraquinone radical anion (AQ ) formed in the electron transfer reaction is consumed by reaction with oxygen, which is reduced to superoxide. This process leaves a base radical cation (B+-, a hole ) in the DNA with no partner for annihilation, which provides time for it to hop through the DNA until it is trapped by water (usually at a GG step) to form a product, 7,8-dihydro-8-oxoguanine (8-OxoG)... Fig. 1 Schematic mechanism for the long-distance oxidation of DNA. Irradiation of the anthraquinone (AQ) and intersystem crossing (ISC) forms the triplet excited state (AQ 3), which is the species that accepts an electron from a DNA base (B) and leads to products. Electron transfer to the singlet excited state of the anthraquinone (AQ 1) leads only to back electron transfer. The anthraquinone radical anion (AQ ) formed in the electron transfer reaction is consumed by reaction with oxygen, which is reduced to superoxide. This process leaves a base radical cation (B+-, a hole ) in the DNA with no partner for annihilation, which provides time for it to hop through the DNA until it is trapped by water (usually at a GG step) to form a product, 7,8-dihydro-8-oxoguanine (8-OxoG)...

See other pages where Electronic excitation intersystem crossing is mentioned: [Pg.6]    [Pg.281]    [Pg.230]    [Pg.281]    [Pg.199]    [Pg.1608]    [Pg.2497]    [Pg.2948]    [Pg.2999]    [Pg.425]    [Pg.426]    [Pg.300]    [Pg.431]    [Pg.745]    [Pg.745]    [Pg.753]    [Pg.53]    [Pg.400]    [Pg.136]    [Pg.601]    [Pg.58]    [Pg.1461]    [Pg.357]    [Pg.111]    [Pg.213]    [Pg.272]    [Pg.429]    [Pg.22]    [Pg.64]    [Pg.210]    [Pg.494]    [Pg.277]    [Pg.9]    [Pg.15]    [Pg.52]    [Pg.409]    [Pg.425]    [Pg.441]    [Pg.239]    [Pg.243]    [Pg.113]    [Pg.378]    [Pg.607]   
See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Cross excitation

Electronic crossing

Electronic excited

Electronical excitation

Electrons excitation

Electrons, excited

Intersystem crossing

© 2024 chempedia.info