Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron densities wave function properties

Remember from Chapter 4 that the periods and frequencies of waves are reciprocally related.) Exactly those properties are expressed by their reciprocal lattice vectors h. The amplitudes of these electron density waves vary according to the distribution of atoms about the planes. Although the electron density waves in the crystal cannot be observed directly, radiation diffracted by the planes (the Fourier transforms of the electron density waves) can. Thus, while we cannot recombine directly the spectral components of the electron density in real space, the Bragg planes, we can Fourier transform the scattering functions of the planes, the Fhki, and simultaneously combine them in such a way that the end result is the same, the electron density in the unit cell. In other words, each Fhki in reciprocal, or diffraction space is the Fourier transform of one family of planes, hkl. With the electron density equation, we both add these individual Fourier transforms together in reciprocal space, and simultaneously Fourier transform the result of that summation back into real space to create the electron density. [Pg.121]

Many molecular properties can be related directly to the wave function or total electron density. Some examples are dipole moments, polarizability, the electrostatic potential, and charges on atoms. [Pg.108]

The HF method determines the best one-determinant trial wave function (within the given basis set). It is therefore clear that in order to improve on HF results, the starting point must be a trial wave function which contains more than one Slater Determinant (SD). This also means that the mental picture of electrons residing in orbitals has to be abandoned, and the more fundamental property, the electron density, should be considered. As the HF solution usually gives 99% of the correct answer, electron correlation methods normally use the HF wave function as a starting point for improvements. [Pg.99]

The division of the molecular volume into atomic basins follows from a deeper analysis based on the principle of stationary action. The shapes of the atomic basins, and the associated electron densities, in a functional group are very similar in different molecules. The local properties of the wave function are therefore transferable to a very good approximation, which rationalizes the basis for organic chemistry, that functional groups react similarly in different molecules. It may be shown that any observable... [Pg.224]

In the Hartree-Fock approach, the many-body wave function in form of a Slater determinant plays the key role in the theory. For instance, the Hartree-Fock equations are derived by minimization of the total energy expressed in terms of this determinantal wave function. In density functional theory (3,4), the fundamental role is taken over by an observable quantity, the electron density. An important theorem of density functional theory states that the correct ground state density, n(r), determines rigorously all electronic properties of the system, in particular its total energy. The totd energy of a system can be expressed as a functional of the density n (r) and this functional, E[n (r)], is minimized by the ground state density. [Pg.50]

It is also of interest to study the "inverse" problem. If something is known about the symmetry properties of the density or the (first order) density matrix, what can be said about the symmetry properties of the corresponding wave functions In a one electron problem the effective Hamiltonian is constructed either from the density [in density functional theories] or from the full first order density matrix [in Hartree-Fock type theories]. If the density or density matrix is invariant under all the operations of a space CToup, the effective one electron Hamiltonian commutes with all those elements. Consequently the eigenfunctions of the Hamiltonian transform under these operations according to the irreducible representations of the space group. We have a scheme which is selfconsistent with respect to symmetty. [Pg.134]

However, billiard balls are a pretty bad model for electrons. First of all, as discussed above, electrons are fermions and therefore have an antisymmetric wave function. Second, they are charged particles and interact through the Coulomb repulsion they try to stay away from each other as much as possible. Both of these properties heavily influence the pair density and we will now enter an in-depth discussion of these effects. Let us begin with an exposition of the consequences of the antisymmetry of the wave function. This is most easily done if we introduce the concept of the reduced density matrix for two electrons, which we call y2. This is a simple generalization of p2(x1 x2) given above according to... [Pg.38]

Alternatively, we can base our analysis on the electron density, which as we have seen, is readily obtained from the wave function. The advantage of analyzing the electron density is that, unlike the wave function, the electron density is a real observable property of a molecule that, as we will see in Chapter 6, can be obtained from X-ray crystallographic studies. At the present time however, it is usually simpler to obtain the electron density of a molecule from an ab initio calculations rather than determine it experimentally. Because this analysis is based on a real physically observable property of a molecule, this approach appears to be the more fundamental. It is the approach taken by the atoms in molecules (AIM) theory, which we discuss in Chapters 6 and 7, on which we base part of the discussion in Chapters 8 and 9. [Pg.82]

The many-electron wave function (40 of any system is a function of the spatial coordinates of all the electrons and of their spins. The two possible values of the spin angular momentum of an electron—spin up and spin down—are described respectively by two spin functions denoted as a(co) and P(co), where co is a spin degree of freedom or spin coordinate . All electrons are identical and therefore indistinguishable from one another. It follows that the interchange of the positions and the spins (spin coordinates) of any two electrons in a system must leave the observable properties of the system unchanged. In particular, the electron density must remain unchanged. In other words, 4 2 must not be altered... [Pg.272]

The electronic wave function of an n-electron molecule is defined in 3n-dimensional configuration space, consistent with any conceivable molecular geometry. If the only aim is to characterize a molecule of fixed Born-Oppenheimer geometry the amount of information contained in the molecular wave function is therefore quite excessive. It turns out that the three-dimensional electron density function contains adequate information to uniquely determine the ground-state electronic properties of the molecule, as first demonstrated by Hohenberg and Kohn [104]. The approach is equivalent to the Thomas-Fermi model of an atom applied to molecules. [Pg.394]

Theorem 1. The external potential v(r) is determined, within a trivial additive constant, by the electron density p(r). (The implication of this existence theorem is that p(r) determines the wave function and therefore all electronic properties in the ground state see also Equation 4.6.)... [Pg.48]


See other pages where Electron densities wave function properties is mentioned: [Pg.271]    [Pg.42]    [Pg.54]    [Pg.386]    [Pg.443]    [Pg.54]    [Pg.504]    [Pg.314]    [Pg.15]    [Pg.42]    [Pg.111]    [Pg.572]    [Pg.211]    [Pg.11]    [Pg.27]    [Pg.397]    [Pg.725]    [Pg.283]    [Pg.208]    [Pg.5]    [Pg.42]    [Pg.46]    [Pg.50]    [Pg.83]    [Pg.182]    [Pg.194]    [Pg.195]    [Pg.204]    [Pg.207]    [Pg.230]    [Pg.249]    [Pg.66]    [Pg.134]    [Pg.269]    [Pg.390]    [Pg.159]    [Pg.680]    [Pg.115]    [Pg.53]    [Pg.137]   


SEARCH



Density waves

Electron density function

Electron density functionals

Electron functionalization

Electron-density wave

Electronic density function

Electronic wave function

Electrons wave properties

Functional properties

Property density function

Wave properties

Waves electrons

© 2024 chempedia.info