Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Discontinuous flow pressure

Another way around the problem of pressure-driven flow in the single-phase membrane was presented by Meyers.He worked around the problem by allowing for a discontinuity in pressure at the membrane/solution interface, even though the electrochemical potential of all soluble species is continuous. He argued that additional mechanical stresses compressing the membrane should be indistinguishable from the thermodynamic pressure, and thus, the thermodynamic pressure might be discontinuous at the interface. [Pg.456]

The solution expressed by Eq. (1.36) indicates that there is no discontinuous flow between the upstream 1 and the downstream 2. However, the solution given by Eq. (1.37) indicates the existence of a discontinuity of pressure, density, and temperature between 1 and 2. This discontinuity is called a normal shock wave , which is set-up in a flow field perpendicular to the flow direction. Discussions on the structures of normal shock waves and supersonic flow fields can be found in the relevant monographs. [Pg.10]

It is obvious that the entropy change will be positive in the region Mi > 1 and negative in the region Mi < 1 for gases with 1 < y < 1-67. Thus, Eq. (1.46) is valid only when Ml is greater than unity. In other words, a discontinuous flow is formed only when Ml > 1. This discontinuous surface perpendicular to the flow direction is the normal shock wave. The downstream Mach number, Mj, is always < 1, i. e. subsonic flow, and the stagnation pressure ratio is obtained as a function of Mi by Eqs. (1.37) and (1.41). The ratios of temperature, pressure, and density across the shock wave are obtained as a function of Mi by the use of Eqs. (1.38)-(1.40) and Eqs. (1.25)-(1.27). The characteristics of a normal shock wave are summarized as follows ... [Pg.11]

Because RPSA is appHed to gain maximum product rate from minimum adsorbent, single beds are the norm. In such cycles where the steps take only a few seconds, flows to and from the bed are discontinuous. Therefore, surge vessels are usuaHy used on feed and product streams to provide unintermpted flow. Some RPSA cycles incorporate delay steps unique to these processes. During these steps, the adsorbent bed is completely isolated and any pressure gradient is aHowed to dissipate (68). The UOP Polybed PSA system uses five to ten beds to maximize the recovery of the less selectively adsorbed component and to extend the process to larger capacities (69). [Pg.282]

In general, cavitation damage can be anticipated wherever an unstable state of fluid flow exists or where substantial pressure changes are encountered. Susceptible locations include sharp discontinuities on metal surfaces, areas where flow direction is suddenly altered (Fig. 12.5), and regions where the cross-sectional areas of the flow passages are changed. [Pg.275]

To permit a more general discussion, we can replace the snowplow with a piston, and replace the snow with any fluid (Fig. 2,3), We consider the example shown in a reference frame in which the undisturbed fluid has zero velocity. When the piston moves, it applies a planar stress, a, to the fluid. For a non-viscous, hydrodynamic fluid, the stress is numerically equal to the pressure, P, The pressure induces a shock discontinuity, denoted by which propagates through the fluid with velocity U. The velocity u of the piston, and the shocked material carried with it (with respect to the stationary frame of reference), is called the particle velocity, since that would be the velocity of a particle caught up in the flow, or of a particle of the fluid. [Pg.9]

Application of this procedure to inadvertently ignited safety valve discharges can involve a special problem. Certain combinations of pressure ratio and length of safety valve riser can result in choked flow, with a pressure discontinuity at the exit. The pressure of the jet then adjusts to atmospheric pressure in a system of shock waves or expansion waves over a distance of a few pipe diameters. These waves can affect the local mixing of the jet with the crosswind. Since the calculation procedure incorporates correlations for subsonic jets, it cannot be expected to be entirely accurate in this case. Nevertheless, since the wave system... [Pg.290]

A detonation shock wave is an abrupt gas dynamic discontinuity across which properties such as gas pressure, density, temperature, and local flow velocities change discontinnonsly. Shockwaves are always characterized by the observation that the wave travels with a velocity that is faster than the local speed of sound in the undisturbed mixtnre ahead of the wave front. The ratio of the wave velocity to the speed of sound is called the Mach number. [Pg.67]

Initial shock-wave overpressure can be determined from a one-dimensional technique. It consists of using conservation equations for discontinuities through the shock and isentropic flow equations through the rarefaction waves, then matching pressure and flow velocity at the contact surface. This procedure is outlined in Liepmatm and Roshko (1967) for the case of a bursting membrane contained in a shock tube. From this analysis, the initial overpressure at the shock front can be calculated with Eq. (6.3.22). This pressure is not only coupled to the pressure in the sphere, but is also related to the speed of sound and the ratio of specific heats. [Pg.189]

Vasopressin levels are increased during hypotension to maintain blood pressure by vasoconstriction. However, there is a vasopressin deficiency in septic shock. Low doses of vasopressin increase MAP, leading to the discontinuation of vasopressors. However, routine use of vasopressin is not recommended because of lack of evidence of efficacy. Vasopressin is a direct vasoconstrictor without inotropic or chronotropic effects and may result in decreased cardiac output and hepatosplanchnic flow. Vasopressin use may be considered in patients with refractory shock despite adequate fluid resuscitation and high-dose vasopressors.24,27-28... [Pg.1194]

As both phases occupy the full flow field concurrently, two sets of conservation equations correspond to these two phases and must be complemented by the set of interfacial jump conditions (discontinuities). A further topological law, relating the void fraction, a, to the phase variables, was needed to compensate for the loss of information due to model simplification (Boure, 1976). One assumption that is often used is the equality of the mean pressures of the two phases, ... [Pg.200]

When both phases are in turbulent flow, or when one phase is discontinuous as in bubble flow, it is not presently possible to formulate the proper boundary conditions and to solve the equations of motion. Therefore, numerous experimental studies have been conducted where the holdups and/or the pressure drop were measured and then correlated as a function of the operating conditions and system parameters. One of the most widely used correlations is that of Lockhart and Martinelli (L12), who assumed that the pressure drop in each phase could be calculated from the equations... [Pg.19]


See other pages where Discontinuous flow pressure is mentioned: [Pg.49]    [Pg.154]    [Pg.437]    [Pg.49]    [Pg.248]    [Pg.46]    [Pg.497]    [Pg.242]    [Pg.132]    [Pg.313]    [Pg.336]    [Pg.28]    [Pg.10]    [Pg.29]    [Pg.214]    [Pg.856]    [Pg.650]    [Pg.692]    [Pg.379]    [Pg.379]    [Pg.216]    [Pg.159]    [Pg.484]    [Pg.362]    [Pg.371]    [Pg.274]    [Pg.269]    [Pg.672]    [Pg.147]    [Pg.523]    [Pg.183]    [Pg.487]    [Pg.85]    [Pg.52]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Discontinuous

Discontinuous flow

Pressure discontinuity

© 2024 chempedia.info