Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dirac-Hartree-Fock-Roothaan Matrix Equations

Dirac-Hartree-Fock-Roothaan Matrix Equations... [Pg.419]

All exact-decoupling approaches can be related to the modified Dirac equation and we closely follow here the work presented in Refs. [16,647]. Two-component electrons-only Hamiltonians can be obtained from block-diagonalizing the four-component (one-electron) modified Dirac equation in matrix representation. As we have discussed in chapters 8 and 10 for four-component Dirac-Hartree-Fock-Roothaan calculations, basis functions for the small component must fulfill certain constraints as otherwise variational instability and a wrong nonrelativistic limit [547] would result. The correct nonrelativistic limit will be obtained if the kinetic-balance condition,

[Pg.533]

The relativistic theory and computation of atomic structures and processes has therefore attained some sort of maturity and the various codes now available are widely used. Those mentioned so far were based on ideas originating from Hartree and his students [28], and have been developed in much the same way as the non-relativistic self-consistent field theory recorded in [28-30]. All these methods rely on the numerical solution, using finite differences, of the coupled differential equations for radial orbital wave-functions of the self-consistent field. This makes them unsuitable for the study of molecules, for which it is preferable to expand the radial amplitudes in a suitably chosen set of analytic functions. This nonrelativistic matrix Hartree-Fock method, as it is often termed, was pioneered by Hall and Lennard-Jones [31], Hall [32,33] and Roothaan [34,35], and it was Roothaan s students, Synek [36] and Kim [37] who were the first to attempt to solve the corresponding matrix Dirac-Hartree-Fock equations. Kim was able to obtain solutions for the ground state of neon in 1967, but at the expense of some numerical instability, and it seemed at the time that the matrix Dirac-Hartree-Fock scheme would not be a serious competitor to the finite difference codes. [Pg.109]

Hence, the relativistic analog of the spin-restriction in nonrelativistic closed-shell Hartree-Fock theory is Kramers-restricted Dirac-Hartree-Fock theory. We should emphasize that our derivation of the Roothaan equation above is the pedestrian way chosen in order to produce this matrix-SCF equation step by step. The most sophisticated formulations are the Kramers-restricted quaternion Dirac-Hartree-Fock implementations [286,318,319]. A basis of Kramers pairs, i.e., one adapted to time-reversal s)mimetry, transforms into another basis under quatemionic unitary transformation [589]. This can be exploited not only for the optimization of Dirac-Hartree-Fock spinors, but also for MCSCF spinors. In a Kramers one-electron basis, an operator O invariant under time reversal possesses a specific block structure. [Pg.424]




SEARCH



Dirac equation

Dirac-Fock

Dirac-Fock equation

Dirac-Hartree

Dirac-Hartree-Fock

Dirac-Hartree-Fock-Roothaan

Equation Dirac-Hartree-Fock

Equations matrix

Fock equations

Fock matrix

Fock-Roothaan equations

Hartree Fock equation

Hartree equation

Hartree-Fock equation matrix

Hartree-Fock matrix

Hartree-Fock-Roothaan equation

Matrices Dirac

Roothaan

Roothaan equations

© 2024 chempedia.info