Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipole systems fractional rotational diffusion

Chapter 8 by W. T. Coffey, Y. P. Kalmykov, and S. V. Titov, entitled Fractional Rotational Diffusion and Anomalous Dielectric Relaxation in Dipole Systems, provides an introduction to the theory of fractional rotational Brownian motion and microscopic models for dielectric relaxation in disordered systems. The authors indicate how anomalous relaxation has its origins in anomalous diffusion and that a physical explanation of anomalous diffusion may be given via the continuous time random walk model. It is demonstrated how this model may be used to justify the fractional diffusion equation. In particular, the Debye theory of dielectric relaxation of an assembly of polar molecules is reformulated using a fractional noninertial Fokker-Planck equation for the purpose of extending that theory to explain anomalous dielectric relaxation. Thus, the authors show how the Debye rotational diffusion model of dielectric relaxation of polar molecules (which may be described in microscopic fashion as the diffusion limit of a discrete time random walk on the surface of the unit sphere) may be extended via the continuous-time random walk to yield the empirical Cole-Cole, Cole-Davidson, and Havriliak-Negami equations of anomalous dielectric relaxation from a microscopic model based on a... [Pg.586]

FRACTIONAL ROTATIONAL DIFFUSION AND ANOMALOUS DIELECTRIC RELAXATION IN DIPOLE SYSTEMS... [Pg.285]

In order to demonstrate how the anomalous relaxation behavior described by the hitherto empirical Eqs. (9)—(11) may be obtained from our fractional generalizations of the Fokker-Planck equation in configuration space (in effect, fractional Smoluchowski equations), Eq. (101), we first consider the fractional rotational motion of a fixed axis rotator [1], which for the normal diffusion is the first Debye model (see Section II.C). The orientation of the dipole is specified by the angular coordinate 4> (the azimuth) constituting a system of one rotational degree of freedom. Electrical interactions between the dipoles are ignored. [Pg.316]

In the fixed axis rotation model of dielectric relaxation of polar molecules a typical member of the assembly is a rigid dipole of moment p rotating about a fixed axis through its center. The dipole is specified by the angular coordinate < ) (the azimuth) so that it constitutes a system of 1 (rotational) degree of freedom. The fractional diffusion equation for the time evolution of the probability density function W(4>, t) in configuration space is given by Eq. (52) which we write here as... [Pg.306]


See other pages where Dipole systems fractional rotational diffusion is mentioned: [Pg.412]    [Pg.413]   


SEARCH



Diffuse rotation

Diffusion rotational

Diffusion systems

Diffusive systems

Dipole rotation

Dipole rotator

Dipole systems

Dipoles, rotating

Fractionation systems

Rotational 1 system

Rotational diffusivity

© 2024 chempedia.info