Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

DIPAMP hydrogenations

The related chiral rhodium catalyst 4 has been used to effect kinetic resolution of these substrates.2 In this catalyst the achiral phosphine ligand of 1 is replaced by (R,R)-l,2-bis(o-anisylphenylphosphino)ethane (DIPAMP). Hydrogenation cat-... [Pg.44]

Monsanto s commercial route to the Parkinson s drug, L-DOPA (3,4-dihydroxyphenylalanine), utilizes an Erlenmeyer azlactone prepared from vanillin. The pioneering research in catalytic asymmetric hydrogenation by William Knowles as exemplified by his reduction of 24 to 25 in 95% ee with the DiPAMP diphosphine ligand was recognized with a Nobel Prize in Chemistry in 2001. ... [Pg.232]

An especially important case is the enantioselective hydrogenation of a-amidoacrylic acids, which leads to a-aminoacids.29 A particularly detailed study has been carried out on the mechanism of reduction of methyl Z-a-acetamidocinnamate by a rhodium catalyst with a chiral diphosphine ligand DIPAMP.30 It has been concluded that the reactant can bind reversibly to the catalyst to give either of two complexes. Addition of hydrogen at rhodium then leads to a reactive rhodium hydride and eventually to product. Interestingly, the addition of hydrogen occurs most rapidly in the minor isomeric complex, and the enantioselectivity is due to this kinetic preference. [Pg.380]

In the hydrogenation of 3-substituted itaconate ester derivatives by rhodium-dipamp, the alkoxycarbonyl group at the stereogenic center also exerts a powerful directing effect, comparable to that induced by OH in the kinetic resolution of (a-hydroxyethyl)acrylate, leading to a high enantiomer-discriminating ability up to feR fes = 16 1 (Table 21.18, entry 5) [64]. [Pg.694]

DIPAMP-Rh complex to give the corresponding chiral a-amino acid derivative in over 98% ee. The chiral product has been used for the synthesis of (S)-(-)-ac-romelobic acid [88]. Hydrogenation of a tetrahydropyrazine derivative catalyzed by a PHANEPHOS-Rh complex at -40"C gives an intermediate for the synthesis of Crixivan in 86% ee [82a]. Hydrogenation of another tetrahydropyrazine carboxamide derivative catalyzed by an (R)-BINAP-Rh catalyst leads to the chiral product in 99% ee [89]. [Pg.866]

The preparation of this type of catalyst is quite simple. HPAs such as phos-photungstic acid were adsorbed onto inorganic supports such as clays, alumina, and active carbon. Subsequently, the metal complex was added to form the immobilized catalyst. If necessary, the catalyst can be pre-reduced. These types of catalysts were developed mainly for enantioselective hydrogenations. For instance, a supported chiral catalyst that was based on a cationic Rh(DIPAMP) complex, phosphotungstic acid and alumina showed an ee-value of 93% with a TOF of about 100 IT1 in the hydrogenation of 2-acetamidoacrylic acid methyl ester (Fig. 42.4 Table 42.2). [Pg.1429]

Chapter 2 to 6 have introduced a variety of reactions such as asymmetric C-C bond formations (Chapters 2, 3, and 5), asymmetric oxidation reactions (Chapter 4), and asymmetric reduction reactions (Chapter 6). Such asymmetric reactions have been applied in several industrial processes, such as the asymmetric synthesis of l-DOPA, a drug for the treatment of Parkinson s disease, via Rh(DIPAMP)-catalyzed hydrogenation (Monsanto) the asymmetric synthesis of the cyclopropane component of cilastatin using a copper complex-catalyzed asymmetric cyclopropanation reaction (Sumitomo) and the industrial synthesis of menthol and citronellal through asymmetric isomerization of enamines and asymmetric hydrogenation reactions (Takasago). Now, the side chain of taxol can also be synthesized by several asymmetric approaches. [Pg.397]

The hydrogenation reaction is carried out with a substituted cinnamic acid. The acetamido group is of particular importance because it functions as a secondary complexation function in addition to the alkene functionality. In the first step the alkene co-ordinates to the cationic rhodium species (containing an enantiopure phosphine DIPAMP in Figures 4.4 and 4.5 with the chirality at phosphorus carrying three different substituents, Ph, o-An, CH2) for which there are several diasteromeric structures due to ... [Pg.80]


See other pages where DIPAMP hydrogenations is mentioned: [Pg.114]    [Pg.114]    [Pg.47]    [Pg.345]    [Pg.8]    [Pg.17]    [Pg.115]    [Pg.384]    [Pg.120]    [Pg.82]    [Pg.84]    [Pg.61]    [Pg.2]    [Pg.11]    [Pg.23]    [Pg.32]    [Pg.27]    [Pg.273]    [Pg.671]    [Pg.672]    [Pg.676]    [Pg.691]    [Pg.746]    [Pg.749]    [Pg.764]    [Pg.861]    [Pg.871]    [Pg.905]    [Pg.905]    [Pg.995]    [Pg.996]    [Pg.1029]    [Pg.1075]    [Pg.1075]    [Pg.1086]    [Pg.1288]    [Pg.1429]    [Pg.332]    [Pg.481]    [Pg.494]    [Pg.109]    [Pg.110]    [Pg.87]    [Pg.90]   
See also in sourсe #XX -- [ Pg.573 ]




SEARCH



DIPAMP

© 2024 chempedia.info