Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dielectric relaxation continued fractional rotational diffusion

Chapter 8 by W. T. Coffey, Y. P. Kalmykov, and S. V. Titov, entitled Fractional Rotational Diffusion and Anomalous Dielectric Relaxation in Dipole Systems, provides an introduction to the theory of fractional rotational Brownian motion and microscopic models for dielectric relaxation in disordered systems. The authors indicate how anomalous relaxation has its origins in anomalous diffusion and that a physical explanation of anomalous diffusion may be given via the continuous time random walk model. It is demonstrated how this model may be used to justify the fractional diffusion equation. In particular, the Debye theory of dielectric relaxation of an assembly of polar molecules is reformulated using a fractional noninertial Fokker-Planck equation for the purpose of extending that theory to explain anomalous dielectric relaxation. Thus, the authors show how the Debye rotational diffusion model of dielectric relaxation of polar molecules (which may be described in microscopic fashion as the diffusion limit of a discrete time random walk on the surface of the unit sphere) may be extended via the continuous-time random walk to yield the empirical Cole-Cole, Cole-Davidson, and Havriliak-Negami equations of anomalous dielectric relaxation from a microscopic model based on a... [Pg.586]

Another most important question in anomalous dielectric relaxation is the physical interpretation of the parameters a and v in the various relaxation formulas and what are the physical conditions that give rise to these parameters. Here we shall give a reasonably convincing derivation of the fractional Smoluckowski equation from the discrete orientation model of dielectric relaxation. In the continuum limit of the orientation sites, such an approach provides a justification for the fractional diffusion equation used in the explanation of the Cole-Cole equation. Moreover, the fundamental solution of that equation for the free rotator will, by appealing to self-similarity, provide some justification for the neglect of spatial derivatives of higher order than the second in the Kramers-Moyal expansion. In order to accomplish this, it is first necessary to explain the concept of the continuous-time random walk (CTRW). [Pg.294]


See other pages where Dielectric relaxation continued fractional rotational diffusion is mentioned: [Pg.380]    [Pg.398]    [Pg.398]    [Pg.419]   


SEARCH



Continued fractions

Continuous diffusion

Continuous fractionation

Dielectric relaxation

Dielectric relaxation (continued

Diffuse rotation

Diffusion continued)

Diffusion relaxation

Diffusion rotational

Fractional rotational diffusion dielectric relaxation

Relaxation Continuous

Relaxation fractional rotational diffusion

Relaxation —continued

Rotational (continued

Rotational diffusivity

Rotational relaxation

© 2024 chempedia.info