Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detection direct conductivity

Fig. 3-4. Separation of fluoride, chloride, and bromide on a surface-aminated XAD-1-resin. — Separator 1000 mm X 2 mm I.D. XAD-1 (0.04 mequiv/g) eluent 6.5 10-4 mol/L potassium benzoate (pH 4.6) flow rate 2 mL/min detection direct conductivity injection volume 50 pL solute concentrations 4.8 ppm fluoride, 5.1 ppm chloride, and 26 ppm bromide (taken from [19]). Fig. 3-4. Separation of fluoride, chloride, and bromide on a surface-aminated XAD-1-resin. — Separator 1000 mm X 2 mm I.D. XAD-1 (0.04 mequiv/g) eluent 6.5 10-4 mol/L potassium benzoate (pH 4.6) flow rate 2 mL/min detection direct conductivity injection volume 50 pL solute concentrations 4.8 ppm fluoride, 5.1 ppm chloride, and 26 ppm bromide (taken from [19]).
Fig. 3-5. Separation of various anions on PRP-X100. - Eluent 0.004 mol/L sodium p-hydroxybenzoate (pH 8.6) flow rate 3 mL/min detection direct conductivity injection volume 100 pL solute concentrations 20 ppm each (taken from [21]). Fig. 3-5. Separation of various anions on PRP-X100. - Eluent 0.004 mol/L sodium p-hydroxybenzoate (pH 8.6) flow rate 3 mL/min detection direct conductivity injection volume 100 pL solute concentrations 20 ppm each (taken from [21]).
Fig. 3-9. Separation of various inorganic anions on Shimadzu IC-A1. — Column temperature 40 °C eluent 0.0025 mol/L phthalic acid + 0.0024 mol/L Tris flow rate 1.5 mL/min detection direct conductivity injection volume 20 pL solute concentrations 5 ppm fluoride, 10 ppm chloride, 15 ppm nitrite, 20 ppm bromide, 30 ppm nitrate, and 40 ppm sulfate. Fig. 3-9. Separation of various inorganic anions on Shimadzu IC-A1. — Column temperature 40 °C eluent 0.0025 mol/L phthalic acid + 0.0024 mol/L Tris flow rate 1.5 mL/min detection direct conductivity injection volume 20 pL solute concentrations 5 ppm fluoride, 10 ppm chloride, 15 ppm nitrite, 20 ppm bromide, 30 ppm nitrate, and 40 ppm sulfate.
Fig. 3-26. Separation of various inorganic anions on a Vydac 302 IC 4.6 silica-based anion exchanger. -Eluent 0.002 mol/L o-phthalic acid (pH 5.0) flow rate 2 mL/min detection direct conductivity injection volume 10 pL solute concentrations 100 ppm each (taken from [25]). Fig. 3-26. Separation of various inorganic anions on a Vydac 302 IC 4.6 silica-based anion exchanger. -Eluent 0.002 mol/L o-phthalic acid (pH 5.0) flow rate 2 mL/min detection direct conductivity injection volume 10 pL solute concentrations 100 ppm each (taken from [25]).
Fig. 3-32. Separation of the sodium salts of various anions on silica coated with crown ether polymers. - Stationary phase dibenzo-18-crown-6 eluent water flow rate 1 mL/min detection direct conductivity solute concentrations 0.7 ppm Na2S04, 0.1 ppm NaCI 1 ppm Nal, 4 ppm NaSCN, and 8 ppm NaHC03 (taken from [37]). Fig. 3-32. Separation of the sodium salts of various anions on silica coated with crown ether polymers. - Stationary phase dibenzo-18-crown-6 eluent water flow rate 1 mL/min detection direct conductivity solute concentrations 0.7 ppm Na2S04, 0.1 ppm NaCI 1 ppm Nal, 4 ppm NaSCN, and 8 ppm NaHC03 (taken from [37]).
Fig. 3-34. Separation of inorganic anions on silica modified with polyamide crown ether. - Eluent water flow rate 0.6 mL/min detection direct conductivity injection volume 20 pL solute concentrations each 0.1 mol/L of the respective salts (taken from [39]). Fig. 3-34. Separation of inorganic anions on silica modified with polyamide crown ether. - Eluent water flow rate 0.6 mL/min detection direct conductivity injection volume 20 pL solute concentrations each 0.1 mol/L of the respective salts (taken from [39]).
Fig. 3-61. Separation of inorganic anions using a borate/gluconate buffer as the eluent. - Separator column TSK Gel IC-PW eluent 0.0013 mol/L Na2B407 + 0.0058 mol/L H3B03 + 0.0014 mol/L potassium gluconate/acetonitrile (88 12 v/ v), pH 8.5 flow rate 1.2 mL/min detection direct conductivity injection 100 pL anion standard (5 to 40 ppm) (taken from [66]). Fig. 3-61. Separation of inorganic anions using a borate/gluconate buffer as the eluent. - Separator column TSK Gel IC-PW eluent 0.0013 mol/L Na2B407 + 0.0058 mol/L H3B03 + 0.0014 mol/L potassium gluconate/acetonitrile (88 12 v/ v), pH 8.5 flow rate 1.2 mL/min detection direct conductivity injection 100 pL anion standard (5 to 40 ppm) (taken from [66]).
Fig. 3-63. Separation of inorganic anions using p-hydroxybenzoic add as the eluent. - Separator column Wescan 269-029 eluent 0.004 mol/L PHBA, pH 8.7 flow rate 1.5 mL/min detection direct conductivity injection volume 100 pL solute concentrations 5 ppm fluoride, chloride, nitrite, bromide, and nitrate, and 10 ppm orthophosphate and sulfate. Fig. 3-63. Separation of inorganic anions using p-hydroxybenzoic add as the eluent. - Separator column Wescan 269-029 eluent 0.004 mol/L PHBA, pH 8.7 flow rate 1.5 mL/min detection direct conductivity injection volume 100 pL solute concentrations 5 ppm fluoride, chloride, nitrite, bromide, and nitrate, and 10 ppm orthophosphate and sulfate.
Fig. 3-127. Separation of various inorganic anions with an isoconductive eluent. - Separator column Waters IC-PAK Anion eluent see Table 3-23 (eluent switching at the time of injection) detection direct conductivity injection volume 100 pL solute concentrations 1 ppm fluoride (1), 2 ppm carbonate (2) and chloride (3), 4 ppm nitrite (4), bromide (5), and nitrate (6), 6 ppm orthophosphate (7), 4 ppm sulfate (8) and oxalate (9), 10 ppm chromate (10), and molybdate (11) (taken from [135]). Fig. 3-127. Separation of various inorganic anions with an isoconductive eluent. - Separator column Waters IC-PAK Anion eluent see Table 3-23 (eluent switching at the time of injection) detection direct conductivity injection volume 100 pL solute concentrations 1 ppm fluoride (1), 2 ppm carbonate (2) and chloride (3), 4 ppm nitrite (4), bromide (5), and nitrate (6), 6 ppm orthophosphate (7), 4 ppm sulfate (8) and oxalate (9), 10 ppm chromate (10), and molybdate (11) (taken from [135]).
Fig. 3-130. Separation of alkali metals on a surface-sulfonated polyvinyl resin. - Separator column ION 200 eluent 0.002 mol/ L picolinic acid, pH 2.0 flow rate 2.6 mL/min detection direct conductivity. Fig. 3-130. Separation of alkali metals on a surface-sulfonated polyvinyl resin. - Separator column ION 200 eluent 0.002 mol/ L picolinic acid, pH 2.0 flow rate 2.6 mL/min detection direct conductivity.
Fig. 3-135. Separation of alkali and alkaline-earth metals on Super-Sep. — Eluent 0.005 mol/L tartaric acid flow rate 1 mL/min detection direct conductivity injection volume 10 pL solute concentrations 1 ppm lithium, 5 ppm sodium, and ammonium, 10 ppm each of potassium, magnesium, and calcium, 20 ppm strontium and barium. Fig. 3-135. Separation of alkali and alkaline-earth metals on Super-Sep. — Eluent 0.005 mol/L tartaric acid flow rate 1 mL/min detection direct conductivity injection volume 10 pL solute concentrations 1 ppm lithium, 5 ppm sodium, and ammonium, 10 ppm each of potassium, magnesium, and calcium, 20 ppm strontium and barium.
Fig. 3-136. Separation of alkali metal ions on silica modified with poly(benzo-15-crown-5). - Eluent water flow rate 1 mL/min detection direct conductivity injection volume 1 pL solute concentrations 13.6 g/L LiBr, 14.4 g/L NaBr, 26.2 g/L KBr, 36.4 g/L RbBr, and 34 g/L CsBr (taken from [38]). Fig. 3-136. Separation of alkali metal ions on silica modified with poly(benzo-15-crown-5). - Eluent water flow rate 1 mL/min detection direct conductivity injection volume 1 pL solute concentrations 13.6 g/L LiBr, 14.4 g/L NaBr, 26.2 g/L KBr, 36.4 g/L RbBr, and 34 g/L CsBr (taken from [38]).
Fig. 3-139. Separation of monomethylamine, dimethylamine, and trimethylamine on Vydac 400 IC 405. — Eluent 0.005 mol/L isonicotinic acid + 0.0025 mol/L HN03 + 100 mL/L methanol flow rate 2 mL/min detection direct conductivity injection volume 100 pL solute concentrations 1 ppm ammonium, 2 ppm monomethylamine, 5 ppm dimethylamine, and 10 ppm trimethylamine. Fig. 3-139. Separation of monomethylamine, dimethylamine, and trimethylamine on Vydac 400 IC 405. — Eluent 0.005 mol/L isonicotinic acid + 0.0025 mol/L HN03 + 100 mL/L methanol flow rate 2 mL/min detection direct conductivity injection volume 100 pL solute concentrations 1 ppm ammonium, 2 ppm monomethylamine, 5 ppm dimethylamine, and 10 ppm trimethylamine.
Fig. 4-2. Separation of organic acids on PRP-X300. - Eluent 0.0005 mol/L H2S04 flow rate 1 mL/min detection direct conductivity injection volume 100 pL solute concentrations 4 ppm tartaric acid, 7.5 ppm malic acid and citric acid, 10 ppm lactic acid, 25 ppm acetic acid, and 40 ppm succinic acid. Fig. 4-2. Separation of organic acids on PRP-X300. - Eluent 0.0005 mol/L H2S04 flow rate 1 mL/min detection direct conductivity injection volume 100 pL solute concentrations 4 ppm tartaric acid, 7.5 ppm malic acid and citric acid, 10 ppm lactic acid, 25 ppm acetic acid, and 40 ppm succinic acid.
Fig. 5-13. Ion-pair chromatographic separation of inorganic anions on a chemically bonded reversed phase. — Separator column LiChrosorb RP 18 (10 xm) eluent 0.002 mol/L TBAOH + 0.05 mol/L phosphate buffer (pH 6.7) flow rate 2 mL/min detection direct conductivity injection volume 20 pL solute concentrations 1000 ppm each of fluoride, chloride, sulfate, nitrite, bromide, dichromate, and nitrate (taken from [26]). Fig. 5-13. Ion-pair chromatographic separation of inorganic anions on a chemically bonded reversed phase. — Separator column LiChrosorb RP 18 (10 xm) eluent 0.002 mol/L TBAOH + 0.05 mol/L phosphate buffer (pH 6.7) flow rate 2 mL/min detection direct conductivity injection volume 20 pL solute concentrations 1000 ppm each of fluoride, chloride, sulfate, nitrite, bromide, dichromate, and nitrate (taken from [26]).
Fig. 5-39. Separation of a lauryl sulfate (Texapon N 25). - Separator column Hypersil 5 MOS eluent (A) 0.001 mol/L NaOAc / acetonitrile (70 30 v/v), (B) 0.001 moI/L NaOAc / acetonitrile (60 40 v/v) gradient linear, 100% A to 100% B in 10 min flow rate 1 mL/min detection direct conductivity injection volume 50 pL solute concentration 500 mg/L of the raw material. Fig. 5-39. Separation of a lauryl sulfate (Texapon N 25). - Separator column Hypersil 5 MOS eluent (A) 0.001 mol/L NaOAc / acetonitrile (70 30 v/v), (B) 0.001 moI/L NaOAc / acetonitrile (60 40 v/v) gradient linear, 100% A to 100% B in 10 min flow rate 1 mL/min detection direct conductivity injection volume 50 pL solute concentration 500 mg/L of the raw material.
Fig. 3-16. Separation of various inorganic anions on Polyspher 1C AN-1. - Column temperature 35°C eluant 1.5 mmol/L phthalic acid -t 1.38 mol/L Tris + 0.3 mol/L H3BO3, pH 4.0 flow rate 1.3 mL/min detection direct conductivity injection volume 20pL solute concentrations 10 mg/L each of orthophosphate (1), fluoride (2), chloride (3), nitrite (4), bromide (5), nitrate (6), and sulfate (7). Fig. 3-16. Separation of various inorganic anions on Polyspher 1C AN-1. - Column temperature 35°C eluant 1.5 mmol/L phthalic acid -t 1.38 mol/L Tris + 0.3 mol/L H3BO3, pH 4.0 flow rate 1.3 mL/min detection direct conductivity injection volume 20pL solute concentrations 10 mg/L each of orthophosphate (1), fluoride (2), chloride (3), nitrite (4), bromide (5), nitrate (6), and sulfate (7).
Fig. 3 -19. Separation of various inorganic anions on Alltech Universal Anion. - Separator 150 mm X 4.6 mm i. d. Universal Anion eluant 5 mmol/L p-hydroxybenzoic acid, pH 7.9 with LiOH flow rate 1 mL/min detection direct conductivity injection volume 100 pL solute concentrations 10 mg/L fluoride (1),... Fig. 3 -19. Separation of various inorganic anions on Alltech Universal Anion. - Separator 150 mm X 4.6 mm i. d. Universal Anion eluant 5 mmol/L p-hydroxybenzoic acid, pH 7.9 with LiOH flow rate 1 mL/min detection direct conductivity injection volume 100 pL solute concentrations 10 mg/L fluoride (1),...
Fig. 3-58. Separation of the sodium saits of various chloro-containing species on siiica modified with 4-hydroxymethylbenzo-18-crown-6. — Eiuant methanoi flow rate 1.6 mL/min detection direct conductivity solute concentrations 23 mg/L NaCi02, 6 mg/L NaCi, 37 mg/L NaClOj, and 326 mg/L NaCi04 (taken from [50]). Fig. 3-58. Separation of the sodium saits of various chloro-containing species on siiica modified with 4-hydroxymethylbenzo-18-crown-6. — Eiuant methanoi flow rate 1.6 mL/min detection direct conductivity solute concentrations 23 mg/L NaCi02, 6 mg/L NaCi, 37 mg/L NaClOj, and 326 mg/L NaCi04 (taken from [50]).
Fig. 3-101. Separation of inorganic anions with a potassium citrate eluant. - Separator column TSK Gel IC-SW eluant 1 mmol/L potassium citrate, pH 5.2 flow rate 1.2 mL/min detection direct conductivity injection volume 100 pL solute concentrations 5 mg/L chloride (1), 10 mg/L each of bromide (2). iodide (3), thiocyanate (4), and sulfate (5). Fig. 3-101. Separation of inorganic anions with a potassium citrate eluant. - Separator column TSK Gel IC-SW eluant 1 mmol/L potassium citrate, pH 5.2 flow rate 1.2 mL/min detection direct conductivity injection volume 100 pL solute concentrations 5 mg/L chloride (1), 10 mg/L each of bromide (2). iodide (3), thiocyanate (4), and sulfate (5).

See other pages where Detection direct conductivity is mentioned: [Pg.48]    [Pg.49]    [Pg.85]    [Pg.149]   
See also in sourсe #XX -- [ Pg.215 ]




SEARCH



Conductance/conduction direct

Conductivity detection

Detection direct

© 2024 chempedia.info