Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dendritic branching

The ability of a dendritic shell to encapsulate a functional core moiety and to create a specific site-isolated microenvironment capable of affecting the molecular properties has been intensively explored in recent years [19]. A variety of experimental techniques have been employed to evidence the shielding of the core moiety and to ascertain the effect of the dendritic shell [19, 20]. Dendrimers with a fullerene core appear to be appealing candidates to evidence such effects resulting from the presence of the surrounding dendritic branches. Effectively, the lifetime of the first triplet excited state of fullerene derivatives... [Pg.88]

Methanofullerene 20 with phenylacetylene dendrimer addends has also been reported [45] (Fig. 10). The UV absorption of fullerodendrimer 20 is particularly strong and is mainly attributed to transitions located on the two dendritic branches of the molecule. The photophysical investigations revealed that the large poly(aryl)acetylene branches act as photon antennae [46]. [Pg.96]

All the fullerene-containing dendrimers reported to date have been prepared with a Cgo core but never with fullerene units at their surface or with Cgg spheres in the dendritic branches. We have recently started a research program on the synthesis of dendrons substituted with fullerene moieties. These fulleroden-drons are interesting building blocks for the preparation of monodisperse fullerene-rich macromolecules. In addition, they are also amphiphilic compounds capable of forming stable Langmuir films at the air-water interface. [Pg.97]

Poly(aryl ether) branches of generation 1 to 3 have been appended to a pho-totautomerizable quinoHne core to investigate the effect of dendritic architecture on the excited state intramolecular proton transfer [45]. The changes observed in the absorption and emission spectra on increasing dendrimer generation indicate that the dendritic branches affect the planarity of the core and therefore the efficiency of the excited state intramolecular proton transfer and of the related fluorescence processes. [Pg.170]

In a recent study, poly(aryl ether) dendritic branches terminated with triethyleneglycol chains were attached to Cgg [66] dendrimer 32 represents the fourth generation. The photophysical properties of these fullerodendrimers have been systematically investigated in three solvents, namely toluene, dichloromethane, and acetonitrile. On increasing dendrimer generation, it has been found that in each solvent (i) the maximum of the fullerene fluorescence band is red-shifted... [Pg.180]

This manuscript describes the dendritic macromolecules for optical and optoelectronic apph-cations, particularly stimulated emission, laser emission, and nonlinear optics. Dendrimers have been designed and synthesized for these applications based on simple concepts. A coreshell structure, through the encapsulation of active imits by dendritic branches, or a cone-shaped structure, through the step-by-step reactions of active imits, can provide particular benefits for the optical high-gain media and nonlinear optical materials. It also described experimental results that support the methods presented for designing and fabricating functionalized dendrimers for optoelectronic applications, and theoretical results that reveal the intermolecular electronic effect of the dendritic structure. [Pg.205]

Fig. 22. The influence of different configurations in the dendritic branch bromides 61 and 62 on coupling with the same chiral core 54 [88,90]... Fig. 22. The influence of different configurations in the dendritic branch bromides 61 and 62 on coupling with the same chiral core 54 [88,90]...
Porphyrin complexes are particularly suitable cores to construct dendrimers and to investigate how the behavior of an electroactive species is modified when surrounded by dendritic branches. In particular, dendritic porphyrins can be regarded as models for electron-transfer proteins like cytochrome c [42, 43]. Electrochemical investigation on Zn-porphyrins bearing polyether-amide branches has shown that the first reduction and oxidation processes are affected by the electron-rich microenvironment created by the dendritic branches [42]. Furthermore, for the third generation compound all the observed processes become irreversible. [Pg.222]

The same research group extended their studies, proposing a systematic investigation of the core activities for different carbohydrate densities during biosensing processes.279 Three new mannosylated dendrimers with a Ru(bipy)3 core unit were synthesized, and the influence of the number and size of dendritic branches on the rate of electron and energy transfer, as well as the lectin-biosensing abilities (Scheme 41),... [Pg.279]

Characterization of Dendritically Branched Polymers by Small Angle Neutron Scattering (SANS), Small Angle X-Ray Scattering (SAXS) and Transmission Electron Microscopy (TEM)... [Pg.255]

Figure 11.7 illustrates the three different subtypes of dendritically branched molecules that have been identified within the major architectural class of dendritic polymers. Random hyperbranched polymers, not only exhibit polydispersity in molecular mass between individual molecules, it should also be noted... [Pg.266]


See other pages where Dendritic branching is mentioned: [Pg.89]    [Pg.91]    [Pg.92]    [Pg.98]    [Pg.102]    [Pg.109]    [Pg.123]    [Pg.175]    [Pg.176]    [Pg.181]    [Pg.206]    [Pg.314]    [Pg.120]    [Pg.122]    [Pg.195]    [Pg.71]    [Pg.167]    [Pg.171]    [Pg.213]    [Pg.226]    [Pg.291]    [Pg.249]    [Pg.165]    [Pg.924]    [Pg.667]    [Pg.160]    [Pg.566]    [Pg.11]    [Pg.11]    [Pg.22]    [Pg.26]    [Pg.38]    [Pg.211]    [Pg.257]    [Pg.259]    [Pg.259]    [Pg.261]    [Pg.263]    [Pg.265]    [Pg.267]   
See also in sourсe #XX -- [ Pg.323 ]




SEARCH



Branched dendrites

Dendritic branch

© 2024 chempedia.info