Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cysteine synthesis bound pathway

When cucurbit cells are fed O-acetylserine or its metabolic precursors the rate of hydrogen sulfide emission in response to sulfate declines, and the incorporation of labeled sulfur from 35S-sulfate into cysteine increases (18). Inhibition of the synthesis of the O-acetylserine precursor acetyl coenzyme A by 3-fluoropyruvate (22) enhances hydrogen sulfide emission, but inhibits cysteine synthesis (1 ). These observations indicate that the availability of O-acetylserine is the rate limiting factor in cysteine synthesis. Hydrogen sulfide may be emitted to the extent the amount of sulfate reduced exceeds the synthesis of O-acetylserine. Therefore, direct release of sulfide from carrier-bound sulfide appears to be responsible for the emission of hydrogen sulfide in response to sulfate (Figure 1, pathway 1). [Pg.49]

Fig. 2. Summary of the free and bound pathways of sulfate assimilation in plants. Some related reactions and points of entry of several forms of inorganic sulfur are also shown. The reaction sequence catalyzed by (1) ATP sulfurylase, (2) APS sulfotransferase, (3) thiosulfonate reductase, and (4) cysteine synthase constitutes the bound sulfate assimilation pathway. The synthesis of OAS is catalyzed by (5) serine transacetylase. The reaction sequence (I), (6)-(9)or (1), (2), (10), (8), (9) constitutes the free pathway reactims (7) and (10) are nonenzymatic, (6) is catalyzed by APS sulfotransferase, (8) by sulfite reductase, and (9) by cysteine synthase. APS and PAPS are interrelated via (11) APS kinase and (12) NDP phophohydrolase. APS can be hydrolyzed via (13) APS sulfohydrolase or (14) APS cyclase. Fig. 2. Summary of the free and bound pathways of sulfate assimilation in plants. Some related reactions and points of entry of several forms of inorganic sulfur are also shown. The reaction sequence catalyzed by (1) ATP sulfurylase, (2) APS sulfotransferase, (3) thiosulfonate reductase, and (4) cysteine synthase constitutes the bound sulfate assimilation pathway. The synthesis of OAS is catalyzed by (5) serine transacetylase. The reaction sequence (I), (6)-(9)or (1), (2), (10), (8), (9) constitutes the free pathway reactims (7) and (10) are nonenzymatic, (6) is catalyzed by APS sulfotransferase, (8) by sulfite reductase, and (9) by cysteine synthase. APS and PAPS are interrelated via (11) APS kinase and (12) NDP phophohydrolase. APS can be hydrolyzed via (13) APS sulfohydrolase or (14) APS cyclase.
Fig. 3. Regulation of the bound pathway for the assimilation of sulfate into cysteine and associated processes. Carrier refers to an endogenous thiol of uncertain identity in higher plants. Enzymes associated with the sulfate assimilation pathway and the synthesis of O-acetylseiine are (1) high-ailinity sulfate uptake mechanism, (2) ATP-sulfurylase, (3) adenosine S -phosphosulfate (APS) sulfotransferase, (4) organic thiosulfate reductase, (5) cysteine synthase, and (6) serine transacetylase. Cysteine sulfhydrase (7), an enzyme of cysteine catabolism, and nitrate reductase (8), the first enzyme of the nitrate assimilation pathway, are also shown. Inhibitory control of the pathways is shown by discontinuous lines (----) and enhancement by continuous lines (------). Fig. 3. Regulation of the bound pathway for the assimilation of sulfate into cysteine and associated processes. Carrier refers to an endogenous thiol of uncertain identity in higher plants. Enzymes associated with the sulfate assimilation pathway and the synthesis of O-acetylseiine are (1) high-ailinity sulfate uptake mechanism, (2) ATP-sulfurylase, (3) adenosine S -phosphosulfate (APS) sulfotransferase, (4) organic thiosulfate reductase, (5) cysteine synthase, and (6) serine transacetylase. Cysteine sulfhydrase (7), an enzyme of cysteine catabolism, and nitrate reductase (8), the first enzyme of the nitrate assimilation pathway, are also shown. Inhibitory control of the pathways is shown by discontinuous lines (----) and enhancement by continuous lines (------).
Sulfate. As for the production of hydrogen sulfide from sulfur dioxide/sulfite at least three possible pathways for the light-dependent synthesis of hydrogen sulfide in response to sulfate can be assumed, i.e. first the light-dependent reduction of sulfate to carrier-bound sulfide followed by a release of the sulfide moiety from its carrier second the light-dependent reduction of sulfate to carrier-bound sulfide followed by an incorporation of the sulfide moiety into cysteine and subsequent degradation of cysteine third the release of sulfite from carrier-bound sulfite followed by reduction of free sulfite to sulfide (see Figure 1). [Pg.49]

The hepatic uptake of diet-derived copper occurs via the copper transporter 1 (Ctrl), which transports copper with high affinity in a metal-specific, saturable fashion at the hepatocyte plasma membrane (Lee et al., 2001 Klomp et al., 2002). After uptake copper is bound to metallothionein (MT), a cytosolic, low molecular weight, cystein-rich, metal binding protein. MT I and MT II are ubiquitously expressed in all cell types including hepatocytes, and have a critical role to protect intracellular proteins from copper toxicity (Palmiter, 1998 Kelley and Palmiter, 1996). The copper stored in metallothionein can be donated to other proteins. Specific pathways allow the intracellular trafficking and compartmentaUzation of copper, ensuring adequate cuproprotein synthesis while avoiding cellular toxicity (Fig.21.1). [Pg.461]


See other pages where Cysteine synthesis bound pathway is mentioned: [Pg.219]    [Pg.338]    [Pg.1462]    [Pg.47]    [Pg.291]    [Pg.84]    [Pg.299]    [Pg.300]    [Pg.324]    [Pg.117]    [Pg.463]    [Pg.33]    [Pg.471]    [Pg.305]    [Pg.654]    [Pg.254]    [Pg.448]    [Pg.395]    [Pg.372]   
See also in sourсe #XX -- [ Pg.338 ]




SEARCH



Cysteine pathway

Cysteine synthesis

© 2024 chempedia.info