Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters cyclic, reduction

From their structures, it appears that the hydrolytic stability of macrocyclic lactones must necessarily be inferior to macrocyclic polyethers. Ease of synthesis of the cyclic esters is therefore one of the aspects which commend them to interest. It is probably for this reason that such lactones have not been made more often by the interesting approach of Kdgel and Schroder . These workers report the ozonolysis of dibenzo-18-crown-6 in a mixture of methanol and dichloromethane at —20°. Reduction of the ozon-ide at —75° using dimethylsulfide followed by warming and addition of acetone led to formation of 6 in 14% yield. The bis-oxalate had mp 164—165° from acetone, very similar to that of the starting crown. The transformation is illustrated below in Eq. (5.9). [Pg.225]

A classical method for the vicinal hydroxylation of a double bond involves treatment with osmium tetroxide to give a cyclic ester, followed by reductive cleavage to the glycol ... [Pg.183]

Fischer s original method for conversion of the nitrile into an aldehyde involved hydrolysis to a carboxylic acid, ring closure to a cyclic ester (lactone), and subsequent reduction. A modern improvement is to reduce the nitrile over a palladium catalyst, yielding an imine intermediate that is hydrolyzed to an aldehyde. Note that the cyanohydrin is formed as a mixture of stereoisomers at the new chirality center, so two new aldoses, differing only in their stereochemistry at C2, Tesult from Kiliani-Fischer synthesis. Chain extension of D-arabinose, for example, yields a mixture of D-glucose and o-mannose. [Pg.994]

Tillett et al.iS0 have discussed the rapid hydrolysis of cyclic sulfur-containing esters in terms of the entropy strain principle. In the transition state for acyclic ester hydrolysis the molecule assumes a more ordered siructure relative to the ground state, whereas with the five-membered cyclic esters the molecule is already held in a rigid structure with a corresponding reduction in entropy (ca. 10 eu). Unlike the cyclic five-membered phosphates, the corre-... [Pg.45]

The Criegee mechanism originally proposed involves the formation of an osmium(VI)-ester complex (106) from the [4+2] cycloaddition of the Osvul cis-dioxo moiety with an alkene, followed by the hydrolysis or reduction of (106) to cis-glycol and reduced osmium species. In support of this mechanism a variety of Osvl cyclic esters such as (107) or (108) (L = quinuclidine) have recently been synthesized from Os04 and the alkene, and characterized by an X-ray crystal structure.290,343 In solution the dimeric complex (108) dissociates to give the monomeric dioxo trigonal-bipyramidal complex (109), which is similar to (106).344... [Pg.358]

Reaction of this intermediate with base leads the anion of the newly revealed hydroxyl group to attack with the carhoxylate in what amounts to an internal transesterification. This step forms the cyclic ester and thus the requisite pyranone ring (50). Catalytic hydrogenation of 50 results in reduction of the nitro group to yield 51. Acylation of the newly formed amine with 5-trifluoromethylpyridinium-2-sulfonyl chloride affords 52. ... [Pg.121]

In chemical oxidation or reduction the redox reagent and the substrate often form a covalent or ionic bond, for example, an ester in chromic acid oxidation [8], a sulfonium methylide in the Swern oxidation [9], cyclic esters in the svn dihydroxylation with OSO4 [10], or in the selenium dioxide oxidation of ketones and aldehydes [11]. In electrochemical processes the substrate must diffuse from the bulk of the solution to the electrode and compete there with other components of the electrolyte by competitive adsorption for a position at the electrode surface [12]. The next step is then generation of the reactive intermediate by electron transfer at the electrode that reacts with a low activation energy to the products. In chemical oxidations or reductions one finds a reductive or oxidative elimination of the intermediate with a higher activation energy. [Pg.208]

Voltammetric data for ester reductions are available for several aromatic esters [51-54], and in particular cyclic voltammetry shows clearly that in the absence of proton donors reversible formation of anion radical occurs [51]. In dimethylfonnamide (DMF) solution the peak potential for reduction of methyl benzoate is —2.29 V (versus SCE) for comparison dimethyl terephthalate reduces at —1.68 V and phthalic anhydride at —1.25 V [4]. Half-wave potentials for reduction of aromatic carboxylate esters in an unbuffered solution of pH 7.2 are linearly correlated with cr values [51] electron-withdrawing substituents in the ring or alkoxy group shift Ei/o toward less negative potentials. Generally, esters seem to be more easily reducible than the parent carboxylic acids. Anion radicals of methyl, ethyl, and isopropyl benzoate have been detected by electron paramagnetic resonance (epr) spectroscopy upon cathodic reduction of these esters in acetonitrile-tetrapro-pylammonium perchlorate [52]. The anion radicals of several anhydrides, including phthalic anhydride, have similarly been studied [55]. [Pg.458]

The formation of the cyclic ester leads to the reduction of manganese, from Mn(VII) to Mn(V)... [Pg.92]

Reductions of aromatic carbonyl compounds a-substituted carbonyl compounds a-hydroxy ketones p- and y-substituted carbonyl compounds ketones and a- and p-diketones P-keto acids and esters, y-kcto esters masked carbonyl compounds activated double bonds (hydrogenation) acyclic and cyclic ketones reductive amination of keto acids BY BY BY, glycerolDH BY BY, An, Cr, Cu, Gc, Ha, Ks, Mi, Mr, Ns, Pd, Pm, Rn, Y1 BY, Ao, Cb, Cg, Cu, Ct, Gc, Hp, Lk, Mj, Pf, Pm, Pv, Rr, Td, glycerolDH BY BY, An, Gc, Pc HLADH, TBADH, other ADHs, HSDHs AADH, GluDH, PheDH... [Pg.179]

Metal alkoxides have promising role in catalytic reactions. In this chapter, we briefly review the history, chciracteristics, cuid synthesis routes of metal alkoxide and then discuss some catalytic processes that are performed with them. These processes include polymerization of different olefin oxides and cyclic esters asymmetric reduction of aldehydes and ketones oxidation of sulfides and olefins and a variety of other asymmetric reactions. The rest of the chapter discusses the characteristics of these catalytic systems from different points of view. [Pg.225]


See other pages where Esters cyclic, reduction is mentioned: [Pg.204]    [Pg.204]    [Pg.120]    [Pg.154]    [Pg.466]    [Pg.1169]    [Pg.299]    [Pg.555]    [Pg.358]    [Pg.962]    [Pg.1047]    [Pg.248]    [Pg.4140]    [Pg.147]    [Pg.1804]    [Pg.312]    [Pg.555]    [Pg.112]    [Pg.253]    [Pg.66]    [Pg.740]    [Pg.225]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Cyclic P-keto esters reduction with yeast

Cyclic esters

Cyclic reduction

Esters reduction

© 2024 chempedia.info