Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cumulant canonical transformation theory

To summarize the theory dynamic correlations are described by the unitary operator exp A acting on a suitable reference funchon, where A consists of excitation operators of the form (4). We employ a cumulant decomposition to evaluate all expressions in the energy and amphtude equations. Since we are applying the cumulant decomposition after the first commutator (the term linear in the amplimdes), we call this theory linearized canonical transformation theory, by analogy with the coupled-cluster usage of the term. The key features of the hnearized CT theory are summarized and compared with other theories in Table II. [Pg.355]

A further point is of interest in the formal discussion of the canonical transformation theory. So far we have assumed that the reference function is fixed and have considered only solving for the amplitudes in the excitation operator. We may also consider optimization of the reference function itself in the presence of the excitation operator A. This consideration is useful in understanding the nature of the cumulant decomposition in the canonical transformation theory. [Pg.361]

In addition to the encouraging numerical results, the canonical transformation theory has a number of appealing formal features. It is based on a unitary exponential and is therefore a Hermitian theory it is size-consistent and it has a cost comparable to that of single-reference coupled-cluster theory. Cumulants are used in two places in the theory to close the commutator expansion of the unitary exponential, and to decouple the complexity of the multireference wave-function from the treatment of dynamic correlation. [Pg.380]

First consider a Hartree-Fock reference function and transform to the Fermi vacuum (aU occupied orbitals are in the vacuum). Then all particle density matrices are zero and the cumulant decomposition, Eq. (23), based on this reference corresponds to simply neglecting aU three and higher particle-rank operators generated by commutators. This type of operator truncation is used in the canonical diagonalization theory of White [22]. [Pg.357]


See other pages where Cumulant canonical transformation theory is mentioned: [Pg.345]    [Pg.381]   
See also in sourсe #XX -- [ Pg.359 , Pg.360 , Pg.361 , Pg.362 , Pg.381 ]




SEARCH



Canonical transformation

Transformation theory

© 2024 chempedia.info