Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Critical current, effect

Fig. 1.41 Schematic anodic polarisation curves for a passivatable metal showing the effect of a passivating agent that has no specific cathodic action, but forms a sparingly soluble salt with the metal cation, a without the passivating agent, b with the passivating agent. The passive current density, the active/passive transition and the critical current density are all lowered in b. The effect of the cathodic reaction c, is to render the metal active in case a, and passive... Fig. 1.41 Schematic anodic polarisation curves for a passivatable metal showing the effect of a passivating agent that has no specific cathodic action, but forms a sparingly soluble salt with the metal cation, a without the passivating agent, b with the passivating agent. The passive current density, the active/passive transition and the critical current density are all lowered in b. The effect of the cathodic reaction c, is to render the metal active in case a, and passive...
In de-aerated 10sulphuric acid (Fig. 3.45) the active dissolution of the austenitic irons occurs at more noble potentials than that of the ferritic irons due to the ennobling effect of nickel in the matrix. This indicates that the austenitic irons should show lower rates of attack when corroding in the active state such as in dilute mineral acids. The current density maximum in the active region, i.e. the critical current density (/ ii) for the austenitic irons tends to decrease with increasing chromium and silicon content. Also the current densities in the passive region are lower for the austenitic irons... [Pg.601]

Table 10.31 Effect on critical current density and Flade potential of chromium content for iron-chromium alloys in lOwt.% sulphuric acid (after West )... Table 10.31 Effect on critical current density and Flade potential of chromium content for iron-chromium alloys in lOwt.% sulphuric acid (after West )...
Table 10.32 Effect on critical current density and passivation potential on alloying nickel with chromium in In and IOn H2SO4 both containing 0-5N K2SO4 (after Myers, Beck and Fontana")... Table 10.32 Effect on critical current density and passivation potential on alloying nickel with chromium in In and IOn H2SO4 both containing 0-5N K2SO4 (after Myers, Beck and Fontana")...
Table 10.34 Effect of concentration of sulphuric acid at 24°C on corrosion rate and critical current density of stainless steel (after Sudbury, Riggs and Shock )... Table 10.34 Effect of concentration of sulphuric acid at 24°C on corrosion rate and critical current density of stainless steel (after Sudbury, Riggs and Shock )...
In reality, this behavior is only observed in the limit of small jg. At currents o 1 A cm-2 that are relevant for fuel cell operation, the electro-osmotic coupling between proton and water fluxes causes nonuniform water distributions in PEMs, which lead to nonlinear effects in r/p M- These deviations result in a critical current density, p at which the increase in r/pp j causes the cell voltage to decrease dramatically. It is thus crucial to develop membrane models that can predicton the basis of experimental data on structure and transport properties. [Pg.397]

The diffusion model and the hydraulic permeation model differ decisively in their predictions of water content profiles and critical current densities. The origin of this discrepancy is the difference in the functions D (T) and /Cp (T). This point was illustrated in Eikerling et al., where both flux terms occurring in Equation (6.46) were converted into flux terms with gradients in water content (i.e., VA) as the driving force and effective transport coefficients for diffusion, A), and hydraulic permeation,... [Pg.401]

For the usual dc measurement the constant dc current source should be capable of providing currents in the range 0.1-10 mA for a typical bar of 1 mm square cross-section, 1 cm length, and a resistivity at 100 K of 50 pOhm-cm the voltage measured for a 1 mA current source would be 1 / V. Since even for a typical low value of the critical current density, 100 A/cm2, the measurement current would be 1000 times less and thus have essentially no effect on the measurement. However, the measurement of 1 / V to a precision of 1% already requires care to assure that noise and thermal voltages are reduced well below this value. Currents of similar value are used for measurements in thin films. [Pg.630]

Resistivity measurements are also routinely made with an ac four probe technique. The wiring would follow according to Figure 1 and the measuring currents used would be in the range 0.1 - 10 mA with frequencies of 100 Hz (9). For flux creep now known to modify susceptibility and critical current measurements care must taken with ac measurements of resistivity although for the low current densities involved the effect will not likely be observed except very close to Tc (10) or in a magnetic field. [Pg.632]

Similarly, if the current in the superconductor exceeds a critical current, the superconductivity is destroyed. This is known as the Silsbee effect. The size of the critical current is dependent on the nature and geometry of the particular sample. [Pg.397]


See other pages where Critical current, effect is mentioned: [Pg.399]    [Pg.102]    [Pg.532]    [Pg.265]    [Pg.818]    [Pg.819]    [Pg.116]    [Pg.209]    [Pg.363]    [Pg.176]    [Pg.125]    [Pg.107]    [Pg.178]    [Pg.189]    [Pg.354]    [Pg.232]    [Pg.287]    [Pg.360]    [Pg.631]    [Pg.650]    [Pg.662]    [Pg.672]    [Pg.700]    [Pg.701]    [Pg.703]    [Pg.705]    [Pg.799]    [Pg.583]    [Pg.276]    [Pg.1577]    [Pg.57]    [Pg.217]    [Pg.224]    [Pg.226]    [Pg.229]    [Pg.231]    [Pg.287]    [Pg.287]   


SEARCH



Critical current oxygenation effects

Critical current, effect strain

Critical effect

Critical effective

Current effect

Effect on critical current density

© 2024 chempedia.info