Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Covariant integral representation

Atomic basis functions in quantum chemistry transform like covariant tensors. Matrices of molecular integrals are therefore fully covariant tensors e.g., the matrix elements of the Fock matrix are F v = (Xn F Xv)- In contrast, the density matrix is a fully contravariant tensor, P = (x IpIx )- This representation is called the covariant integral representation. The derivation of working equations in AO-based quantum chemistry can therefore be divided into two steps (1) formulation of the basic equations in natural tensor representation, and (2) conversion to covariant integral representation by applying the metric tensors. The first step yields equations that are similar to the underlying operator or orthonormal-basis equations and are therefore simple to derive. The second step automatically yields tensorially correct equations for nonorthogonal basis functions, whose derivation may become unwieldy without tensor notation because of the frequent occurrence of the overlap matrix and its inverse. [Pg.47]

In the first expression the integrals are in the covariant AO representation (in which they are calculated), and the one-index transformed density elements are in the contravariant representation (obtained from the MO basis in usual one- and two-electron transformations). The second expression is useful whenever the transformation matrix is calculated directly in the covariant AO representation and requires the transformation of the Fock matrix to the contravariant representation. The last expression is convenient when the number of perturbations is large, since it avoids the transformation of the covariant AO Fock matrix to the MO or contravariant AO representations. [Pg.241]

This is transfer covariant if all quadratically integrable functions are represented in the same orbital basis. Requiring fps to be orthogonal to all radial factor riPa(r)) enforces a unique representation, but introduces Lagrange multipliers in the close-coupling equations. An alternative is to require... [Pg.146]


See other pages where Covariant integral representation is mentioned: [Pg.52]    [Pg.54]    [Pg.52]    [Pg.54]    [Pg.197]    [Pg.198]    [Pg.185]    [Pg.78]    [Pg.353]    [Pg.181]    [Pg.149]    [Pg.3470]   
See also in sourсe #XX -- [ Pg.47 ]




SEARCH



Covariance

Covariant

Covariant representations

Covariates

Covariation

© 2024 chempedia.info